Nuprl Lemma : fill_term_wf

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:composition-function{j:l,i:l}(Gamma.𝕀;A)].
[u:{Gamma.𝕀(phi)p ⊢ _:A}]. ∀[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ u[0]]}].
  (fill cA [phi ⊢→ u] a0 ∈ {Gamma.𝕀 ⊢ _:A[(phi)p |⟶ u]})


Proof




Definitions occuring in Statement :  fill_term: fill cA [phi ⊢→ u] a0 composition-function: composition-function{j:l,i:l}(Gamma;A) partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fill_term: fill cA [phi ⊢→ u] a0 all: x:A. B[x] implies:  Q subtype_rel: A ⊆B guard: {T} squash: T prop: uimplies: supposing a true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q filling-function: filling-function{j:l, i:l}(Gamma;A) cubical-type: {X ⊢ _} interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap-type: (AF)s interval-type: 𝕀 csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x
Lemmas referenced :  comp-to-fill_wf cube-context-adjoin_wf interval-type_wf constrained-cubical-term_wf csm-ap-type_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 partial-term-0_wf cubical-term_wf context-subset_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf thin-context-subset composition-function_wf cubical-type_wf cubical_set_wf squash_wf true_wf csm-ap-id-type subset-cubical-term2 sub_cubical_set_self csm-id_wf equal_wf istype-universe subset-cubical-type context-subset-is-subset subtype_rel_self iff_weakening_equal cubical-type-cumulativity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin instantiate hypothesis hypothesisEquality inhabitedIsType lambdaFormation_alt applyEquality equalityTransitivity equalitySymmetry lambdaEquality_alt hyp_replacement universeIsType sqequalRule equalityIstype dependent_functionElimination independent_functionElimination because_Cache Error :memTop,  imageElimination independent_isectElimination universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination setElimination rename

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].
\mforall{}[cA:composition-function\{j:l,i:l\}(Gamma.\mBbbI{};A)].  \mforall{}[u:\{Gamma.\mBbbI{},  (phi)p  \mvdash{}  \_:A\}].
\mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  u[0]]\}].
    (fill  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0  \mmember{}  \{Gamma.\mBbbI{}  \mvdash{}  \_:A[(phi)p  |{}\mrightarrow{}  u]\})



Date html generated: 2020_05_20-PM-04_48_00
Last ObjectModification: 2020_04_13-PM-06_30_15

Theory : cubical!type!theory


Home Index