Nuprl Lemma : csm-comp_term

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ Compositon(A)]. ∀[u:{Gamma, phi.𝕀 ⊢ _:A}].
[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}]. ∀[Delta:j⊢]. ∀[s:Delta j⟶ Gamma].
  ((comp cA [phi ⊢→ u] a0)s comp (cA)s+ [(phi)s ⊢→ (u)s+] (a0)s ∈ {Delta ⊢ _:((A)s+)[1(𝕀)][(phi)s |⟶ ((u)s+)[1(𝕀)]]})


Proof




Definitions occuring in Statement :  comp_term: comp cA [phi ⊢→ u] a0 csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm+: tau+ csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T composition-structure: Gamma ⊢ Compositon(A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) all: x:A. B[x] squash: T prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a true: True comp_term: comp cA [phi ⊢→ u] a0 csm-id-adjoin: [u] csm-id: 1(X) cubical-type: {X ⊢ _} interval-0: 0(𝕀) csm-ap-type: (AF)s interval-type: 𝕀 csm-adjoin: (s;u) csm-ap: (s)x csm+: tau+ csm-comp: F cc-snd: q cc-fst: p constant-cubical-type: (X) compose: g cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) interval-1: 1(𝕀) csm-ap-term: (t)s and: P ∧ Q same-cubical-type: Gamma ⊢ B face-term-implies: Gamma ⊢ (phi  psi) implies:  Q bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] cubical-type-at: A(a) face-type: 𝔽 I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cubical-term-at: u(a) csm-comp-structure: (cA)tau composition-function: composition-function{j:l,i:l}(Gamma;A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
Lemmas referenced :  cube-context-adjoin_wf interval-type_wf context-subset-adjoin-subtype cubical-term_wf squash_wf true_wf cubical-type_wf context-subset_wf csm-ap-id-type cubical-type-cumulativity2 subtype_rel_transitivity csm-id_wf cube_set_map_wf constrained-cubical-term_wf csm-ap-type_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 csm-ap-term_wf subset-cubical-type sub_cubical_set_functionality context-subset-is-subset composition-structure_wf face-type_wf cubical_set_wf thin-context-subset csm-face-type csm+_wf_interval context-subset-map csm-comp_wf subtype_rel_self csm-context-subset-subtype3 csm-id-adjoin_wf-interval-1 subset-cubical-term cc-fst_wf sub_cubical_set_transitivity sub_cubical_set_self context-adjoin-subset1 csm-context-subset-subtype2 csm-ap-term-wf-subset csm-id-adjoin_wf interval-1_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf lattice-1_wf I_cube_wf fset_wf nat_wf istype-universe subtype_rel-equal subset-cubical-term2 equal_functionality_wrt_subtype_rel2 csm-comp-type interval-0_wf context-subset-term-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination hypothesisEquality setElimination rename dependent_functionElimination applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType because_Cache sqequalRule cumulativity independent_isectElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement inhabitedIsType productElimination Error :memTop,  independent_pairFormation lambdaFormation_alt equalityIstype productEquality isectEquality universeEquality independent_functionElimination dependent_set_memberEquality_alt applyLambdaEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  Compositon(A)].
\mforall{}[u:\{Gamma,  phi.\mBbbI{}  \mvdash{}  \_:A\}].  \mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}].  \mforall{}[Delta:j\mvdash{}].
\mforall{}[s:Delta  j{}\mrightarrow{}  Gamma].
    ((comp  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0)s  =  comp  (cA)s+  [(phi)s  \mvdash{}\mrightarrow{}  (u)s+]  (a0)s)



Date html generated: 2020_05_20-PM-04_37_34
Last ObjectModification: 2020_04_11-PM-00_57_55

Theory : cubical!type!theory


Home Index