Nuprl Lemma : comp_term_wf
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:composition-function{j:l,i:l}(Gamma.𝕀;A)].
∀[u:{Gamma, phi.𝕀 ⊢ _:A}]. ∀[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}].
  (comp cA [phi ⊢→ u] a0 ∈ {Gamma ⊢ _:(A)[1(𝕀)][phi |⟶ (u)[1(𝕀)]]})
Proof
Definitions occuring in Statement : 
comp_term: comp cA [phi ⊢→ u] a0
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
comp_term: comp cA [phi ⊢→ u] a0
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
guard: {T}
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
interval-1: 1(𝕀)
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
cubical-type: {X ⊢ _}
, 
csm-ap-type: (AF)s
, 
interval-type: 𝕀
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
interval-0: 0(𝕀)
Lemmas referenced : 
cube-context-adjoin_wf, 
interval-type_wf, 
context-subset-adjoin-subtype, 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf-interval-0, 
csm-ap-term_wf, 
context-subset_wf, 
subset-cubical-type, 
sub_cubical_set_functionality, 
context-subset-is-subset, 
cubical-term_wf, 
composition-function_wf, 
cubical-type_wf, 
face-type_wf, 
cubical_set_wf, 
squash_wf, 
true_wf, 
thin-context-subset, 
cube_set_map_wf, 
csm-id-adjoin_wf-interval-1, 
csm-ap-id-type, 
csm-id_wf, 
subtype_rel_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
hyp_replacement, 
universeIsType, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
inhabitedIsType, 
setElimination, 
rename, 
productElimination, 
cumulativity
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].
\mforall{}[cA:composition-function\{j:l,i:l\}(Gamma.\mBbbI{};A)].  \mforall{}[u:\{Gamma,  phi.\mBbbI{}  \mvdash{}  \_:A\}].
\mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}].
    (comp  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0  \mmember{}  \{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[1(\mBbbI{})]]\})
Date html generated:
2020_05_20-PM-04_37_07
Last ObjectModification:
2020_04_11-AM-11_24_48
Theory : cubical!type!theory
Home
Index