Nuprl Lemma : comp_term_wf

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:composition-function{j:l,i:l}(Gamma.𝕀;A)].
[u:{Gamma, phi.𝕀 ⊢ _:A}]. ∀[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}].
  (comp cA [phi ⊢→ u] a0 ∈ {Gamma ⊢ _:(A)[1(𝕀)][phi |⟶ (u)[1(𝕀)]]})


Proof




Definitions occuring in Statement :  comp_term: comp cA [phi ⊢→ u] a0 composition-function: composition-function{j:l,i:l}(Gamma;A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T comp_term: comp cA [phi ⊢→ u] a0 subtype_rel: A ⊆B uimplies: supposing a csm-id-adjoin: [u] csm-id: 1(X) guard: {T} squash: T prop: true: True interval-1: 1(𝕀) csm-adjoin: (s;u) csm-ap: (s)x cubical-type: {X ⊢ _} csm-ap-type: (AF)s interval-type: 𝕀 composition-function: composition-function{j:l,i:l}(Gamma;A) interval-0: 0(𝕀)
Lemmas referenced :  cube-context-adjoin_wf interval-type_wf context-subset-adjoin-subtype constrained-cubical-term_wf csm-ap-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 csm-ap-term_wf context-subset_wf subset-cubical-type sub_cubical_set_functionality context-subset-is-subset cubical-term_wf composition-function_wf cubical-type_wf face-type_wf cubical_set_wf squash_wf true_wf thin-context-subset cube_set_map_wf csm-id-adjoin_wf-interval-1 csm-ap-id-type csm-id_wf subtype_rel_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination hypothesisEquality applyEquality equalityTransitivity equalitySymmetry lambdaEquality_alt hyp_replacement universeIsType sqequalRule because_Cache independent_isectElimination imageElimination natural_numberEquality imageMemberEquality baseClosed inhabitedIsType setElimination rename productElimination cumulativity

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].
\mforall{}[cA:composition-function\{j:l,i:l\}(Gamma.\mBbbI{};A)].  \mforall{}[u:\{Gamma,  phi.\mBbbI{}  \mvdash{}  \_:A\}].
\mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}].
    (comp  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0  \mmember{}  \{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[1(\mBbbI{})]]\})



Date html generated: 2020_05_20-PM-04_37_07
Last ObjectModification: 2020_04_11-AM-11_24_48

Theory : cubical!type!theory


Home Index