Nuprl Lemma : fill_term_0

[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}]. ∀[T:{H.𝕀 ⊢ _}]. ∀[u:{H.𝕀(phi)p ⊢ _:T}]. ∀[a0:{H ⊢ _:(T)[0(𝕀)][phi |⟶ u[0]]}].
[cT:H.𝕀 ⊢ Compositon(T)].
  ((fill cT [phi ⊢→ u] a0)[0(𝕀)] a0 ∈ {H ⊢ _:(T)[0(𝕀)]})


Proof




Definitions occuring in Statement :  fill_term: fill cA [phi ⊢→ u] a0 composition-structure: Gamma ⊢ Compositon(A) partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T composition-structure: Gamma ⊢ Compositon(A) fill_term: fill cA [phi ⊢→ u] a0 comp-to-fill: comp-to-fill(Gamma;cA) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) all: x:A. B[x] cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) subtype_rel: A ⊆B constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} uimplies: supposing a implies:  Q squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q same-cubical-type: Gamma ⊢ B partial-term-0: u[0] interval-0: 0(𝕀) csm-id-adjoin: [u] csm-m: m csm-comp: F cc-adjoin-cube: (v;u) compose: g csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x same-cubical-term: X ⊢ u=v:A cubical-type: {X ⊢ _} face-term-implies: Gamma ⊢ (phi  psi) cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] context-subset: Gamma, phi cube-context-adjoin: X.A case-term: (u ∨ v) cubical-term-at: u(a) csm-ap-term: (t)s face-zero: (i=0) pi2: snd(t) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A dM0: 0 interval-presheaf: 𝕀 dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) DeMorgan-algebra: DeMorganAlgebra interval-1: 1(𝕀) lattice-meet: a ∧ b fset-ac-glb: fset-ac-glb(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-0: 0 empty-fset: {} nil: [] face-or: (a ∨ b) face-1: 1(𝔽) rev_uimplies: rev_uimplies(P;Q) dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) fset-image: f"(s) opposite-lattice: opposite-lattice(L) lattice-1: 1 fset-singleton: {x} cons: [a b]
Lemmas referenced :  cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf interval-0_wf csm-comp_wf csm-m_wf csm-id_wf face-or_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf_interval face-zero_wf cc-snd_wf context-subset_wf thin-context-subset context-subset-map composition-structure_wf constrained-cubical-term_wf csm-ap-type_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 partial-term-0_wf istype-cubical-term cubical-type_wf cubical_set_wf cc-fst_wf subset-cubical-term sub_cubical_set_self context-subset-is-subset cubical-term_wf squash_wf true_wf csm-comp-type cube_set_map_wf csm-context-subset-subtype2 equal_wf istype-universe 0-comp-cc-fst-comp-m subtype_rel_self iff_weakening_equal interval-1_wf csm-m-comp-1 csm-ap-id-type csm-comp-term csm-ap-term-wf-subset face-and_wf face-term-and-implies1 csm-subset-domain sub_cubical_set-cumulativity1 face-term-implies-subset face-term-and-implies2 cubical-term-eqcd context-iterated-subset cube_set_map_cumulativity-i-j case-term_wf subtype_rel_transitivity thin-context-subset-adjoin lattice-point_wf face_lattice_wf cubical-term-at_wf I_cube_wf fset_wf nat_wf cc-fst-comp-csm-m-term subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf csm-face-or lattice-1_wf context-adjoin-subset3 csm-m-comp-0 I_cube_pair_redex_lemma face-or-eq-1 fl-eq_wf eqtt_to_assert assert-fl-eq eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf cubical_type_at_pair_lemma cubical-type-at_wf cubical-type-cumulativity interval-type-at-is-point lattice-0-meet dM_wf bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype DeMorgan-algebra_wf bdd-distributive-lattice_wf bdd-lattice_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype DeMorgan-algebra-axioms_wf istype-cubical-type-at csm-ap-term-at dM0_wf interval-type-at cubical-term-equal subset-cubical-type csm-comp-assoc csm-ap-id-term subset-cubical-term2 csm-face-zero face-1_wf csm_id_adjoin_fst_term_lemma cc_snd_csm_id_adjoin_lemma face-type-at lattice-1-join dM-to-FL-eq-1 dm-neg_wf names_wf names-deq_wf subtype_rel-equal free-DeMorgan-lattice_wf context-1-subset subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination hypothesisEquality promote_hyp setElimination rename sqequalRule dependent_functionElimination equalityTransitivity equalitySymmetry because_Cache Error :memTop,  universeIsType applyEquality independent_isectElimination inhabitedIsType lambdaFormation_alt equalityIstype independent_functionElimination lambdaEquality_alt hyp_replacement imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination applyLambdaEquality dependent_set_memberEquality_alt independent_pairFormation productIsType sqequalBase cumulativity productEquality isectEquality functionExtensionality unionElimination equalityElimination dependent_pairFormation_alt voidElimination dependent_pairEquality_alt

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{H.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[u:\{H.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[a0:\{H  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  u[0]]\}].  \mforall{}[cT:H.\mBbbI{}  \mvdash{}  Compositon(T)].
    ((fill  cT  [phi  \mvdash{}\mrightarrow{}  u]  a0)[0(\mBbbI{})]  =  a0)



Date html generated: 2020_05_20-PM-04_50_55
Last ObjectModification: 2020_04_19-PM-02_11_24

Theory : cubical!type!theory


Home Index