Nuprl Lemma : fill_term_0
∀[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}]. ∀[T:{H.𝕀 ⊢ _}]. ∀[u:{H.𝕀, (phi)p ⊢ _:T}]. ∀[a0:{H ⊢ _:(T)[0(𝕀)][phi |⟶ u[0]]}].
∀[cT:H.𝕀 ⊢ Compositon(T)].
  ((fill cT [phi ⊢→ u] a0)[0(𝕀)] = a0 ∈ {H ⊢ _:(T)[0(𝕀)]})
Proof
Definitions occuring in Statement : 
fill_term: fill cA [phi ⊢→ u] a0
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
partial-term-0: u[0]
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
fill_term: fill cA [phi ⊢→ u] a0
, 
comp-to-fill: comp-to-fill(Gamma;cA)
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
all: ∀x:A. B[x]
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
, 
subtype_rel: A ⊆r B
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
same-cubical-type: Gamma ⊢ A = B
, 
partial-term-0: u[0]
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-m: m
, 
csm-comp: G o F
, 
cc-adjoin-cube: (v;u)
, 
compose: f o g
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
same-cubical-term: X ⊢ u=v:A
, 
cubical-type: {X ⊢ _}
, 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
face-type: 𝔽
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
context-subset: Gamma, phi
, 
cube-context-adjoin: X.A
, 
case-term: (u ∨ v)
, 
cubical-term-at: u(a)
, 
csm-ap-term: (t)s
, 
face-zero: (i=0)
, 
pi2: snd(t)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
dM0: 0
, 
interval-presheaf: 𝕀
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
interval-1: 1(𝕀)
, 
lattice-meet: a ∧ b
, 
fset-ac-glb: fset-ac-glb(eq;ac1;ac2)
, 
fset-minimals: fset-minimals(x,y.less[x; y]; s)
, 
fset-filter: {x ∈ s | P[x]}
, 
filter: filter(P;l)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
lattice-0: 0
, 
empty-fset: {}
, 
nil: []
, 
face-or: (a ∨ b)
, 
face-1: 1(𝔽)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
dm-neg: ¬(x)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
fset-image: f"(s)
, 
opposite-lattice: opposite-lattice(L)
, 
lattice-1: 1
, 
fset-singleton: {x}
, 
cons: [a / b]
Lemmas referenced : 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf, 
interval-0_wf, 
csm-comp_wf, 
csm-m_wf, 
csm-id_wf, 
face-or_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf_interval, 
face-zero_wf, 
cc-snd_wf, 
context-subset_wf, 
thin-context-subset, 
context-subset-map, 
composition-structure_wf, 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
partial-term-0_wf, 
istype-cubical-term, 
cubical-type_wf, 
cubical_set_wf, 
cc-fst_wf, 
subset-cubical-term, 
sub_cubical_set_self, 
context-subset-is-subset, 
cubical-term_wf, 
squash_wf, 
true_wf, 
csm-comp-type, 
cube_set_map_wf, 
csm-context-subset-subtype2, 
equal_wf, 
istype-universe, 
0-comp-cc-fst-comp-m, 
subtype_rel_self, 
iff_weakening_equal, 
interval-1_wf, 
csm-m-comp-1, 
csm-ap-id-type, 
csm-comp-term, 
csm-ap-term-wf-subset, 
face-and_wf, 
face-term-and-implies1, 
csm-subset-domain, 
sub_cubical_set-cumulativity1, 
face-term-implies-subset, 
face-term-and-implies2, 
cubical-term-eqcd, 
context-iterated-subset, 
cube_set_map_cumulativity-i-j, 
case-term_wf, 
subtype_rel_transitivity, 
thin-context-subset-adjoin, 
lattice-point_wf, 
face_lattice_wf, 
cubical-term-at_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cc-fst-comp-csm-m-term, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
csm-face-or, 
lattice-1_wf, 
context-adjoin-subset3, 
csm-m-comp-0, 
I_cube_pair_redex_lemma, 
face-or-eq-1, 
fl-eq_wf, 
eqtt_to_assert, 
assert-fl-eq, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
cubical_type_at_pair_lemma, 
cubical-type-at_wf, 
cubical-type-cumulativity, 
interval-type-at-is-point, 
lattice-0-meet, 
dM_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
DeMorgan-algebra-subtype, 
DeMorgan-algebra_wf, 
bdd-distributive-lattice_wf, 
bdd-lattice_wf, 
DeMorgan-algebra-structure_wf, 
DeMorgan-algebra-structure-subtype, 
DeMorgan-algebra-axioms_wf, 
istype-cubical-type-at, 
csm-ap-term-at, 
dM0_wf, 
interval-type-at, 
cubical-term-equal, 
subset-cubical-type, 
csm-comp-assoc, 
csm-ap-id-term, 
subset-cubical-term2, 
csm-face-zero, 
face-1_wf, 
csm_id_adjoin_fst_term_lemma, 
cc_snd_csm_id_adjoin_lemma, 
face-type-at, 
lattice-1-join, 
dM-to-FL-eq-1, 
dm-neg_wf, 
names_wf, 
names-deq_wf, 
subtype_rel-equal, 
free-DeMorgan-lattice_wf, 
context-1-subset, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
promote_hyp, 
setElimination, 
rename, 
sqequalRule, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
Error :memTop, 
universeIsType, 
applyEquality, 
independent_isectElimination, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
independent_functionElimination, 
lambdaEquality_alt, 
hyp_replacement, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
sqequalBase, 
cumulativity, 
productEquality, 
isectEquality, 
functionExtensionality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation_alt, 
voidElimination, 
dependent_pairEquality_alt
Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{H.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[u:\{H.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[a0:\{H  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  u[0]]\}].  \mforall{}[cT:H.\mBbbI{}  \mvdash{}  Compositon(T)].
    ((fill  cT  [phi  \mvdash{}\mrightarrow{}  u]  a0)[0(\mBbbI{})]  =  a0)
Date html generated:
2020_05_20-PM-04_50_55
Last ObjectModification:
2020_04_19-PM-02_11_24
Theory : cubical!type!theory
Home
Index