Nuprl Lemma : lattice-1-join

[l:BoundedLattice]. ∀[x:Point(l)].  (x ∨ 1 ∈ Point(l))


Proof




Definitions occuring in Statement :  bdd-lattice: BoundedLattice lattice-1: 1 lattice-join: a ∨ b lattice-point: Point(l) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-lattice: BoundedLattice uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  le-lattice-1 lattice-le-iff bdd-lattice-subtype-lattice lattice-1_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf and_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf bdd-lattice_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule setElimination rename productElimination independent_isectElimination equalitySymmetry instantiate lambdaEquality cumulativity

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[x:Point(l)].    (x  \mvee{}  1  =  1)



Date html generated: 2020_05_20-AM-08_26_09
Last ObjectModification: 2015_12_28-PM-02_02_21

Theory : lattices


Home Index