Nuprl Lemma : bdd-lattice-subtype-lattice
BoundedLattice ⊆r Lattice
Proof
Definitions occuring in Statement : 
bdd-lattice: BoundedLattice
, 
lattice: Lattice
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
bdd-lattice: BoundedLattice
, 
lattice: Lattice
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
bdd-lattice_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
dependent_set_memberEquality, 
hypothesisEquality, 
applyEquality, 
lemma_by_obid, 
hypothesis, 
sqequalRule, 
productElimination, 
isectElimination
Latex:
BoundedLattice  \msubseteq{}r  Lattice
Date html generated:
2020_05_20-AM-08_24_18
Last ObjectModification:
2015_12_28-PM-02_03_20
Theory : lattices
Home
Index