Nuprl Lemma : bdd-lattice-subtype-lattice

BoundedLattice ⊆Lattice


Proof




Definitions occuring in Statement :  bdd-lattice: BoundedLattice lattice: Lattice subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T bdd-lattice: BoundedLattice lattice: Lattice and: P ∧ Q uall: [x:A]. B[x] prop:
Lemmas referenced :  bounded-lattice-structure-subtype lattice-axioms_wf bdd-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution setElimination thin rename cut dependent_set_memberEquality hypothesisEquality applyEquality lemma_by_obid hypothesis sqequalRule productElimination isectElimination

Latex:
BoundedLattice  \msubseteq{}r  Lattice



Date html generated: 2020_05_20-AM-08_24_18
Last ObjectModification: 2015_12_28-PM-02_03_20

Theory : lattices


Home Index