Nuprl Lemma : csm-m-comp-1
∀[H:j⊢]. (m o [1(𝕀)] = 1(H.𝕀) ∈ H.𝕀 ij⟶ H.𝕀)
Proof
Definitions occuring in Statement : 
csm-m: m
, 
interval-1: 1(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
csm-id: 1(X)
, 
csm-comp: G o F
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
cube-context-adjoin: X.A
, 
interval-presheaf: 𝕀
, 
csm-id: 1(X)
, 
csm-m: m
, 
interval-1: 1(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
csm-comp: G o F
, 
compose: f o g
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
cc-adjoin-cube: (v;u)
, 
dM1: 1
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
cubical_set_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
csm-comp_wf, 
csm-id-adjoin_wf-interval-1, 
csm-m_wf, 
csm-id_wf, 
I_cube_pair_redex_lemma, 
cube_set_restriction_pair_lemma, 
I_cube_wf, 
fset_wf, 
nat_wf, 
lattice-meet-1, 
dM_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
DeMorgan-algebra-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra_wf, 
bdd-distributive-lattice_wf, 
bdd-lattice_wf, 
csm-equal2, 
interval-type-at
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
universeIsType, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
because_Cache, 
lambdaFormation_alt, 
dependent_functionElimination, 
Error :memTop, 
productElimination, 
dependent_pairEquality_alt, 
independent_isectElimination, 
inhabitedIsType
Latex:
\mforall{}[H:j\mvdash{}].  (m  o  [1(\mBbbI{})]  =  1(H.\mBbbI{}))
Date html generated:
2020_05_20-PM-04_42_52
Last ObjectModification:
2020_04_10-AM-11_24_31
Theory : cubical!type!theory
Home
Index