Nuprl Lemma : csm-m-comp-1

[H:j⊢]. (m [1(𝕀)] 1(H.𝕀) ∈ H.𝕀 ij⟶ H.𝕀)


Proof




Definitions occuring in Statement :  csm-m: m interval-1: 1(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A csm-id: 1(X) csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] cube-context-adjoin: X.A interval-presheaf: 𝕀 csm-id: 1(X) csm-m: m interval-1: 1(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] csm-comp: F compose: g csm-adjoin: (s;u) csm-ap: (s)x cc-adjoin-cube: (v;u) dM1: 1 guard: {T} uimplies: supposing a
Lemmas referenced :  cubical_set_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf csm-comp_wf csm-id-adjoin_wf-interval-1 csm-m_wf csm-id_wf I_cube_pair_redex_lemma cube_set_restriction_pair_lemma I_cube_wf fset_wf nat_wf lattice-meet-1 dM_wf bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype subtype_rel_transitivity DeMorgan-algebra_wf bdd-distributive-lattice_wf bdd-lattice_wf csm-equal2 interval-type-at
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut instantiate introduction extract_by_obid hypothesis thin sqequalHypSubstitution isectElimination hypothesisEquality applyEquality sqequalRule because_Cache lambdaFormation_alt dependent_functionElimination Error :memTop,  productElimination dependent_pairEquality_alt independent_isectElimination inhabitedIsType

Latex:
\mforall{}[H:j\mvdash{}].  (m  o  [1(\mBbbI{})]  =  1(H.\mBbbI{}))



Date html generated: 2020_05_20-PM-04_42_52
Last ObjectModification: 2020_04_10-AM-11_24_31

Theory : cubical!type!theory


Home Index