Nuprl Lemma : csm-equal2

[A,B:j⊢]. ∀[f,g:A j⟶ B].  g ∈ j⟶ supposing ∀K:fset(ℕ). ∀x:A(K).  ((f x) (g x) ∈ B(K))


Proof




Definitions occuring in Statement :  cube_set_map: A ⟶ B I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I)
Lemmas referenced :  pscm-equal2 cube-cat_wf cat_ob_pair_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[A,B:j\mvdash{}].  \mforall{}[f,g:A  j{}\mrightarrow{}  B].    f  =  g  supposing  \mforall{}K:fset(\mBbbN{}).  \mforall{}x:A(K).    ((f  K  x)  =  (g  K  x))



Date html generated: 2020_05_20-PM-01_41_14
Last ObjectModification: 2020_04_03-PM-03_33_38

Theory : cubical!type!theory


Home Index