Nuprl Lemma : pscm-equal2
∀[C:SmallCategory]. ∀[A,B:ps_context{j:l}(C)]. ∀[f,g:psc_map{j:l}(C; A; B)].
  f = g ∈ psc_map{j:l}(C; A; B) supposing ∀K:cat-ob(C). ∀x:A(K).  ((f K x) = (g K x) ∈ B(K))
Proof
Definitions occuring in Statement : 
psc_map: A ⟶ B
, 
I_set: A(I)
, 
ps_context: __⊢
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
ps_context: __⊢
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
cat-arrow: cat-arrow(C)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
type-cat: TypeCat
, 
I_set: A(I)
, 
cat-ob: cat-ob(C)
, 
guard: {T}
Lemmas referenced : 
pscm-equal, 
subtype_rel_dep_function, 
cat-ob_wf, 
op-cat_wf, 
cat-arrow_wf, 
type-cat_wf, 
functor-ob_wf, 
I_set_wf, 
subtype_rel-equal, 
cat_ob_op_lemma, 
subtype_rel_self, 
small-category-cumulativity-2, 
psc_map_wf, 
ps_context_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
applyEquality, 
instantiate, 
cumulativity, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
because_Cache, 
universeIsType, 
functionEquality, 
independent_isectElimination, 
dependent_functionElimination, 
lambdaFormation_alt, 
functionExtensionality_alt, 
functionIsType, 
equalityIstype, 
universeEquality, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:ps\_context\{j:l\}(C)].  \mforall{}[f,g:psc\_map\{j:l\}(C;  A;  B)].
    f  =  g  supposing  \mforall{}K:cat-ob(C).  \mforall{}x:A(K).    ((f  K  x)  =  (g  K  x))
Date html generated:
2020_05_20-PM-01_23_59
Last ObjectModification:
2020_04_01-AM-10_47_10
Theory : presheaf!models!of!type!theory
Home
Index