Nuprl Lemma : pscm-equal2

[C:SmallCategory]. ∀[A,B:ps_context{j:l}(C)]. ∀[f,g:psc_map{j:l}(C; A; B)].
  g ∈ psc_map{j:l}(C; A; B) supposing ∀K:cat-ob(C). ∀x:A(K).  ((f x) (g x) ∈ B(K))


Proof




Definitions occuring in Statement :  psc_map: A ⟶ B I_set: A(I) ps_context: __⊢ uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a equal: t ∈ T cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) subtype_rel: A ⊆B so_lambda: λ2x.t[x] ps_context: __⊢ so_apply: x[s] all: x:A. B[x] cat-arrow: cat-arrow(C) pi1: fst(t) pi2: snd(t) type-cat: TypeCat I_set: A(I) cat-ob: cat-ob(C) guard: {T}
Lemmas referenced :  pscm-equal subtype_rel_dep_function cat-ob_wf op-cat_wf cat-arrow_wf type-cat_wf functor-ob_wf I_set_wf subtype_rel-equal cat_ob_op_lemma subtype_rel_self small-category-cumulativity-2 psc_map_wf ps_context_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename applyEquality instantiate cumulativity hypothesis sqequalRule lambdaEquality_alt because_Cache universeIsType functionEquality independent_isectElimination dependent_functionElimination lambdaFormation_alt functionExtensionality_alt functionIsType equalityIstype universeEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:ps\_context\{j:l\}(C)].  \mforall{}[f,g:psc\_map\{j:l\}(C;  A;  B)].
    f  =  g  supposing  \mforall{}K:cat-ob(C).  \mforall{}x:A(K).    ((f  K  x)  =  (g  K  x))



Date html generated: 2020_05_20-PM-01_23_59
Last ObjectModification: 2020_04_01-AM-10_47_10

Theory : presheaf!models!of!type!theory


Home Index