Nuprl Lemma : cc-fst-comp-csm-m-term

[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}].  (((phi)p)m ((phi)p)p ∈ {H.𝕀.𝕀 ⊢ _:𝔽})


Proof




Definitions occuring in Statement :  csm-m: m face-type: 𝔽 interval-type: 𝕀 cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] guard: {T} cube-context-adjoin: X.A cc-fst: p csm-ap-term: (t)s csm-m: m csm-ap: (s)x cc-adjoin-cube: (v;u) pi1: fst(t) cubical-term-at: u(a) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s]
Lemmas referenced :  cubical-term_wf face-type_wf cubical_set_wf cubical-term-equal2 cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf csm-ap-term_wf csm-face-type cc-fst_wf I_cube_wf fset_wf nat_wf csm-m_wf I_cube_pair_redex_lemma lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf face-type-at cubical-term-at_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis universeIsType thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType applyEquality because_Cache Error :memTop,  independent_isectElimination lambdaFormation_alt equalityTransitivity equalitySymmetry dependent_functionElimination productElimination lambdaEquality_alt hyp_replacement productEquality cumulativity isectEquality

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].    (((phi)p)m  =  ((phi)p)p)



Date html generated: 2020_05_20-PM-04_42_08
Last ObjectModification: 2020_04_10-AM-11_23_51

Theory : cubical!type!theory


Home Index