Nuprl Lemma : cc-fst-comp-csm-m-term
∀[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}].  (((phi)p)m = ((phi)p)p ∈ {H.𝕀.𝕀 ⊢ _:𝔽})
Proof
Definitions occuring in Statement : 
csm-m: m
, 
face-type: 𝔽
, 
interval-type: 𝕀
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
cube-context-adjoin: X.A
, 
cc-fst: p
, 
csm-ap-term: (t)s
, 
csm-m: m
, 
csm-ap: (s)x
, 
cc-adjoin-cube: (v;u)
, 
pi1: fst(t)
, 
cubical-term-at: u(a)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
cubical-term_wf, 
face-type_wf, 
cubical_set_wf, 
cubical-term-equal2, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
csm-ap-term_wf, 
csm-face-type, 
cc-fst_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
csm-m_wf, 
I_cube_pair_redex_lemma, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
face-type-at, 
cubical-term-at_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
universeIsType, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
applyEquality, 
because_Cache, 
Error :memTop, 
independent_isectElimination, 
lambdaFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
productElimination, 
lambdaEquality_alt, 
hyp_replacement, 
productEquality, 
cumulativity, 
isectEquality
Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].    (((phi)p)m  =  ((phi)p)p)
Date html generated:
2020_05_20-PM-04_42_08
Last ObjectModification:
2020_04_10-AM-11_23_51
Theory : cubical!type!theory
Home
Index