Nuprl Lemma : sigma_comp_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[cA:X ⊢ Compositon(A)]. ∀[cB:X.A +⊢ Compositon(B)].
  (sigma_comp(cA;cB) ∈ composition-function{j:l,i:l}(X;Σ B))


Proof




Definitions occuring in Statement :  sigma_comp: sigma_comp(cA;cB) composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) cubical-sigma: Σ B cube-context-adjoin: X.A cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sigma_comp: sigma_comp(cA;cB) composition-function: composition-function{j:l,i:l}(Gamma;A) subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] csm+: tau+ prop: guard: {T} implies:  Q csm-id-adjoin: [u] csm-id: 1(X) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} squash: T true: True cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g respects-equality: respects-equality(S;T) partial-term-0: u[0] csm-comp-structure: (cA)tau interval-type: 𝕀 csm-comp: F let: let so_lambda: λ2x.t[x] so_apply: x[s] composition-structure: Gamma ⊢ Compositon(A) cubical-type: {X ⊢ _} csm-ap-type: (AF)s csm-ap: (s)x interval-0: 0(𝕀) csm-ap-term: (t)s csm-adjoin: (s;u) cc-snd: q cc-fst: p constant-cubical-type: (X) and: P ∧ Q cubical-term: {X ⊢ _:A} interval-1: 1(𝕀) cubical-sigma: Σ B cc-adjoin-cube: (v;u) iff: ⇐⇒ Q rev_implies:  Q context-subset: Gamma, phi I_cube: A(I) bdd-distributive-lattice: BoundedDistributiveLattice cubical-type-at: A(a) face-type: 𝔽 functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt
Lemmas referenced :  csm-ap-type_wf cube-context-adjoin_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j interval-type_wf csm+_wf cube_set_map_cumulativity-i-j subset-cubical-type context-subset_wf thin-context-subset-adjoin csm-context-subset-subtype3 sub_cubical_set_functionality context-subset-is-subset csm-cubical-sigma csm-id-adjoin_wf interval-0_wf equal_wf cubical-type_wf csm-id-adjoin_wf-interval-0 cubical-sigma_wf interval-1_wf csm-id-adjoin_wf-interval-1 equal_functionality_wrt_subtype_rel2 cubical-term-eqcd cubical-fst_wf cubical-sigma-subset-adjoin cubical-snd_wf constrained-cubical-term_wf csm-ap-term_wf istype-cubical-term face-type_wf cube_set_map_wf composition-structure_wf cubical_set_wf cubical-term_wf squash_wf true_wf subtype_rel_self csm-context-subset-subtype2 partial-term-0_wf subset-cubical-term2 csm-face-type cc-fst_wf context-adjoin-subset1 respects-equality-context-subset-term cubical-sigma-subset csm-ap-cubical-fst csm-id-adjoin-subset fill_term_0 cc-fst_wf_interval csm-comp-structure_wf fill_term_wf csm-comp-structure-composition-function comp_term_wf respects-equality-set-trivial2 context-subset-term-subtype composition-function-cumulativity cube_set_map_subtype3 sub_cubical_set_self csm-adjoin_wf csm-id_wf subset-cubical-term context-adjoin-subset2 thin-context-subset csm-cubical-snd context-adjoin-subset4 respects-equality-set fset_wf nat_wf I_cube_wf cubical-type-at_wf names-hom_wf cube-set-restriction_wf cubical-type-ap-morph_wf istype-cubical-type-at subset-I_cube subtype-respects-equality subtype_rel_set all_wf subtype_rel_dep_function subtype_rel-equal cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma cubical-pair_wf cubical-pair-eta istype-universe cubical-type-cumulativity iff_weakening_equal csm-ap-cubical-pair ob_pair_lemma lattice-point_wf face_lattice_wf bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf face-term-at-restriction-eq-1 I_cube_pair_redex_lemma cubical-term-at_wf lattice-1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut lambdaEquality_alt thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule independent_isectElimination dependent_functionElimination hyp_replacement equalitySymmetry applyLambdaEquality equalityTransitivity independent_functionElimination universeIsType Error :memTop,  inhabitedIsType setElimination rename imageElimination cumulativity natural_numberEquality imageMemberEquality baseClosed dependent_set_memberEquality_alt equalityIstype lambdaFormation_alt productElimination independent_pairFormation productIsType functionEquality functionIsType universeEquality productEquality isectEquality

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[cA:X  \mvdash{}  Compositon(A)].  \mforall{}[cB:X.A  +\mvdash{}  Compositon(B)].
    (sigma\_comp(cA;cB)  \mmember{}  composition-function\{j:l,i:l\}(X;\mSigma{}  A  B))



Date html generated: 2020_05_20-PM-04_59_16
Last ObjectModification: 2020_04_20-AM-10_03_33

Theory : cubical!type!theory


Home Index