Nuprl Lemma : sigma_comp_wf
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[cA:X ⊢ Compositon(A)]. ∀[cB:X.A +⊢ Compositon(B)].
  (sigma_comp(cA;cB) ∈ composition-function{j:l,i:l}(X;Σ A B))
Proof
Definitions occuring in Statement : 
sigma_comp: sigma_comp(cA;cB), 
composition-structure: Gamma ⊢ Compositon(A), 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
cubical-sigma: Σ A B, 
cube-context-adjoin: X.A, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
sigma_comp: sigma_comp(cA;cB), 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
csm+: tau+, 
prop: ℙ, 
guard: {T}, 
implies: P ⇒ Q, 
csm-id-adjoin: [u], 
csm-id: 1(X), 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
squash: ↓T, 
true: True, 
cube_set_map: A ⟶ B, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
cat-ob: cat-ob(C), 
pi1: fst(t), 
op-cat: op-cat(C), 
spreadn: spread4, 
cube-cat: CubeCat, 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
cat-arrow: cat-arrow(C), 
pi2: snd(t), 
type-cat: TypeCat, 
names-hom: I ⟶ J, 
cat-comp: cat-comp(C), 
compose: f o g, 
respects-equality: respects-equality(S;T), 
partial-term-0: u[0], 
csm-comp-structure: (cA)tau, 
interval-type: 𝕀, 
csm-comp: G o F, 
let: let, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
composition-structure: Gamma ⊢ Compositon(A), 
cubical-type: {X ⊢ _}, 
csm-ap-type: (AF)s, 
csm-ap: (s)x, 
interval-0: 0(𝕀), 
csm-ap-term: (t)s, 
csm-adjoin: (s;u), 
cc-snd: q, 
cc-fst: p, 
constant-cubical-type: (X), 
and: P ∧ Q, 
cubical-term: {X ⊢ _:A}, 
interval-1: 1(𝕀), 
cubical-sigma: Σ A B, 
cc-adjoin-cube: (v;u), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
context-subset: Gamma, phi, 
I_cube: A(I), 
bdd-distributive-lattice: BoundedDistributiveLattice, 
cubical-type-at: A(a), 
face-type: 𝔽, 
functor-ob: ob(F), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt
Lemmas referenced : 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
csm+_wf, 
cube_set_map_cumulativity-i-j, 
subset-cubical-type, 
context-subset_wf, 
thin-context-subset-adjoin, 
csm-context-subset-subtype3, 
sub_cubical_set_functionality, 
context-subset-is-subset, 
csm-cubical-sigma, 
csm-id-adjoin_wf, 
interval-0_wf, 
equal_wf, 
cubical-type_wf, 
csm-id-adjoin_wf-interval-0, 
cubical-sigma_wf, 
interval-1_wf, 
csm-id-adjoin_wf-interval-1, 
equal_functionality_wrt_subtype_rel2, 
cubical-term-eqcd, 
cubical-fst_wf, 
cubical-sigma-subset-adjoin, 
cubical-snd_wf, 
constrained-cubical-term_wf, 
csm-ap-term_wf, 
istype-cubical-term, 
face-type_wf, 
cube_set_map_wf, 
composition-structure_wf, 
cubical_set_wf, 
cubical-term_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
csm-context-subset-subtype2, 
partial-term-0_wf, 
subset-cubical-term2, 
csm-face-type, 
cc-fst_wf, 
context-adjoin-subset1, 
respects-equality-context-subset-term, 
cubical-sigma-subset, 
csm-ap-cubical-fst, 
csm-id-adjoin-subset, 
fill_term_0, 
cc-fst_wf_interval, 
csm-comp-structure_wf, 
fill_term_wf, 
csm-comp-structure-composition-function, 
comp_term_wf, 
respects-equality-set-trivial2, 
context-subset-term-subtype, 
composition-function-cumulativity, 
cube_set_map_subtype3, 
sub_cubical_set_self, 
csm-adjoin_wf, 
csm-id_wf, 
subset-cubical-term, 
context-adjoin-subset2, 
thin-context-subset, 
csm-cubical-snd, 
context-adjoin-subset4, 
respects-equality-set, 
fset_wf, 
nat_wf, 
I_cube_wf, 
cubical-type-at_wf, 
names-hom_wf, 
cube-set-restriction_wf, 
cubical-type-ap-morph_wf, 
istype-cubical-type-at, 
subset-I_cube, 
subtype-respects-equality, 
subtype_rel_set, 
all_wf, 
subtype_rel_dep_function, 
subtype_rel-equal, 
cubical_type_at_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
cubical-pair_wf, 
cubical-pair-eta, 
istype-universe, 
cubical-type-cumulativity, 
iff_weakening_equal, 
csm-ap-cubical-pair, 
ob_pair_lemma, 
lattice-point_wf, 
face_lattice_wf, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
face-term-at-restriction-eq-1, 
I_cube_pair_redex_lemma, 
cubical-term-at_wf, 
lattice-1_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
lambdaEquality_alt, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
independent_isectElimination, 
dependent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
equalityTransitivity, 
independent_functionElimination, 
universeIsType, 
Error :memTop, 
inhabitedIsType, 
setElimination, 
rename, 
imageElimination, 
cumulativity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality_alt, 
equalityIstype, 
lambdaFormation_alt, 
productElimination, 
independent_pairFormation, 
productIsType, 
functionEquality, 
functionIsType, 
universeEquality, 
productEquality, 
isectEquality
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[cA:X  \mvdash{}  Compositon(A)].  \mforall{}[cB:X.A  +\mvdash{}  Compositon(B)].
    (sigma\_comp(cA;cB)  \mmember{}  composition-function\{j:l,i:l\}(X;\mSigma{}  A  B))
Date html generated:
2020_05_20-PM-04_59_16
Last ObjectModification:
2020_04_20-AM-10_03_33
Theory : cubical!type!theory
Home
Index