Nuprl Lemma : csm-ap-cubical-pair

[X,Delta:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[v:{X ⊢ _:(B)[u]}]. ∀[s:Delta j⟶ X].
  ((cubical-pair(u;v))s cubical-pair((u)s;(v)s) ∈ {Delta ⊢ _:(Σ B)s})


Proof




Definitions occuring in Statement :  cubical-pair: cubical-pair(u;v) cubical-sigma: Σ B csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x csm-id-adjoin: [u] pscm-id-adjoin: [u] csm-adjoin: (s;u) pscm-adjoin: (s;u) csm-id: 1(X) pscm-id: 1(X) cube_set_map: A ⟶ B cubical-sigma: Σ B presheaf-sigma: Σ B cc-adjoin-cube: (v;u) psc-adjoin-set: (v;u) csm-ap-term: (t)s pscm-ap-term: (t)s cubical-pair: cubical-pair(u;v) presheaf-pair: presheaf-pair(u;v)
Lemmas referenced :  pscm-ap-presheaf-pair cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[X,Delta:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[v:\{X  \mvdash{}  \_:(B)[u]\}].  \mforall{}[s:Delta  j{}\mrightarrow{}  X].
    ((cubical-pair(u;v))s  =  cubical-pair((u)s;(v)s))



Date html generated: 2020_05_20-PM-02_29_15
Last ObjectModification: 2020_04_03-PM-08_39_31

Theory : cubical!type!theory


Home Index