Nuprl Lemma : pscm-ap-presheaf-pair

[C:SmallCategory]. ∀[X,Delta:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[v:{X ⊢ _:(B)[u]}].
[s:psc_map{j:l}(C; Delta; X)].
  ((presheaf-pair(u;v))s presheaf-pair((u)s;(v)s) ∈ {Delta ⊢ _:(Σ B)s})


Proof




Definitions occuring in Statement :  presheaf-pair: presheaf-pair(u;v) presheaf-sigma: Σ B pscm-id-adjoin: [u] psc-adjoin: X.A pscm-ap-term: (t)s presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  pscm-presheaf-pair pscm-ap-term_wf presheaf-sigma_wf presheaf-pair_wf ps_context_cumulativity2 presheaf-type-cumulativity2 psc-adjoin_wf psc_map_wf presheaf-term_wf pscm-ap-type_wf pscm-id-adjoin_wf presheaf-type_wf small-category-cumulativity-2 ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis hypothesisEquality instantiate applyEquality because_Cache universeIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Delta:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].
\mforall{}[v:\{X  \mvdash{}  \_:(B)[u]\}].  \mforall{}[s:psc\_map\{j:l\}(C;  Delta;  X)].
    ((presheaf-pair(u;v))s  =  presheaf-pair((u)s;(v)s))



Date html generated: 2020_05_20-PM-01_33_13
Last ObjectModification: 2020_04_02-PM-06_30_48

Theory : presheaf!models!of!type!theory


Home Index