Nuprl Lemma : presheaf-pair_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[v:{X ⊢ _:(B)[u]}].
  (presheaf-pair(u;v) ∈ {X ⊢ _:Σ B})


Proof




Definitions occuring in Statement :  presheaf-pair: presheaf-pair(u;v) presheaf-sigma: Σ B pscm-id-adjoin: [u] psc-adjoin: X.A presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-pair: presheaf-pair(u;v) subtype_rel: A ⊆B presheaf-term: {X ⊢ _:A} presheaf-sigma: Σ B all: x:A. B[x] uimplies: supposing a squash: T true: True pi1: fst(t) pi2: snd(t) presheaf-type: {X ⊢ _} presheaf-type-ap-morph: (u f) presheaf-type-at: A(a) and: P ∧ Q guard: {T} pscm-id-adjoin: [u] pscm-ap-type: (AF)s pscm-id: 1(X) pscm-adjoin: (s;u) pscm-ap: (s)x psc-adjoin-set: (v;u) prop: iff: ⇐⇒ Q rev_implies:  Q implies:  Q psc-adjoin: X.A I_set: A(I) functor-ob: ob(F) ps_context: __⊢ cat-functor: Functor(C1;C2) cat-ob: cat-ob(C) type-cat: TypeCat istype: istype(T) label: ...$L... t psc-restriction: f(s)
Lemmas referenced :  presheaf-term_wf pscm-ap-type_wf psc-adjoin_wf small-category-cumulativity-2 ps_context_cumulativity2 presheaf-type-cumulativity2 pscm-id-adjoin_wf presheaf-type_wf ps_context_wf small-category_wf presheaf_type_at_pair_lemma subtype_rel-equal presheaf-type-at_wf psc-adjoin-set_wf pscm-ap-type-at pscm-id-adjoin-ap I_set_wf cat-ob_wf presheaf_type_ap_morph_pair_lemma psc-restriction_wf cat-arrow_wf equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal pscm-adjoin-ap trivial-equal ob_pair_lemma op-cat_wf cat_ob_op_lemma pscm-ap_wf pscm-ap-restriction presheaf-sigma_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType extract_by_obid isectElimination thin hypothesisEquality instantiate applyEquality because_Cache isect_memberEquality_alt isectIsTypeImplies inhabitedIsType setElimination rename dependent_set_memberEquality_alt dependent_functionElimination Error :memTop,  lambdaEquality_alt dependent_pairEquality_alt independent_isectElimination imageElimination natural_numberEquality imageMemberEquality baseClosed promote_hyp lambdaFormation_alt productElimination universeEquality independent_functionElimination productEquality cumulativity hyp_replacement equalityIstype functionEquality functionIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].
\mforall{}[v:\{X  \mvdash{}  \_:(B)[u]\}].
    (presheaf-pair(u;v)  \mmember{}  \{X  \mvdash{}  \_:\mSigma{}  A  B\})



Date html generated: 2020_05_20-PM-01_32_31
Last ObjectModification: 2020_04_03-AM-10_22_38

Theory : presheaf!models!of!type!theory


Home Index