Nuprl Lemma : pscm-id-adjoin_wf

[C:SmallCategory]. ∀[Gamma:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢ _}]. ∀[u:{Gamma ⊢ _:A}].
  ([u] ∈ psc_map{[i j]:l}(C; Gamma; Gamma.A))


Proof




Definitions occuring in Statement :  pscm-id-adjoin: [u] psc-adjoin: X.A presheaf-term: {X ⊢ _:A} presheaf-type: {X ⊢ _} psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pscm-id-adjoin: [u] subtype_rel: A ⊆B uimplies: supposing a squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  pscm-adjoin_wf ps_context_cumulativity2 small-category-cumulativity-2 pscm-id_wf subtype_rel-equal presheaf-term_wf pscm-ap-type_wf equal_wf squash_wf true_wf istype-universe pscm-ap-id-type presheaf-type-cumulativity2 subtype_rel_self iff_weakening_equal presheaf-type_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis because_Cache independent_isectElimination lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[u:\{Gamma  \mvdash{}  \_:A\}].
    ([u]  \mmember{}  psc\_map\{[i  |  j]:l\}(C;  Gamma;  Gamma.A))



Date html generated: 2020_05_20-PM-01_28_02
Last ObjectModification: 2020_04_02-PM-01_51_55

Theory : presheaf!models!of!type!theory


Home Index