Nuprl Lemma : pscm-adjoin-ap
∀[sigma,u,I,del:Top].  (((sigma;u))del ~ ((sigma)del;(u)del))
Proof
Definitions occuring in Statement : 
pscm-adjoin: (s;u)
, 
psc-adjoin-set: (v;u)
, 
pscm-ap: (s)x
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
pscm-ap: (s)x
, 
psc-adjoin-set: (v;u)
, 
pscm-adjoin: (s;u)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[sigma,u,I,del:Top].    (((sigma;u))del  \msim{}  ((sigma)del;(u)del))
Date html generated:
2018_05_23-AM-08_12_59
Last ObjectModification:
2018_05_20-PM-09_52_02
Theory : presheaf!models!of!type!theory
Home
Index