Nuprl Lemma : pscm-adjoin-ap

[sigma,u,I,del:Top].  (((sigma;u))del ((sigma)del;(u)del))


Proof




Definitions occuring in Statement :  pscm-adjoin: (s;u) psc-adjoin-set: (v;u) pscm-ap: (s)x uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  pscm-ap: (s)x psc-adjoin-set: (v;u) pscm-adjoin: (s;u) uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom extract_by_obid hypothesis sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[sigma,u,I,del:Top].    (((sigma;u))del  \msim{}  ((sigma)del;(u)del))



Date html generated: 2018_05_23-AM-08_12_59
Last ObjectModification: 2018_05_20-PM-09_52_02

Theory : presheaf!models!of!type!theory


Home Index