Nuprl Lemma : context-adjoin-subset4

[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}].
  ∀T:{H ⊢_}. ∀[psi:{H.T ⊢ _:𝔽}]. ((psi (phi)p ∈ {H.T ⊢ _:𝔽})  sub_cubical_set{j:l}(H, phi.T; H.T, psi))


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} sub_cubical_set: Y ⊆ X cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q subtype_rel: A ⊆B uimplies: supposing a true: True squash: T prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  context-adjoin-subset3 csm-ap-term_wf cube-context-adjoin_wf face-type_wf csm-face-type cc-fst_wf cubical-term_wf cubical-type_wf cubical_set_wf context-subset_wf subset-cubical-type context-subset-is-subset sub_cubical_set_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  cut instantiate introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt dependent_functionElimination equalityIstype because_Cache sqequalRule Error :memTop,  universeIsType applyEquality independent_isectElimination natural_numberEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry inhabitedIsType imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].
    \mforall{}T:\{H  \mvdash{}j  \_\}.  \mforall{}[psi:\{H.T  \mvdash{}  \_:\mBbbF{}\}].  ((psi  =  (phi)p)  {}\mRightarrow{}  sub\_cubical\_set\{j:l\}(H,  phi.T;  H.T,  psi))



Date html generated: 2020_05_20-PM-03_05_08
Last ObjectModification: 2020_04_13-PM-05_49_47

Theory : cubical!type!theory


Home Index