Nuprl Lemma : cubical-fst_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[p:{X ⊢ _:Σ B}].  (p.1 ∈ {X ⊢ _:A})


Proof




Definitions occuring in Statement :  cubical-fst: p.1 cubical-sigma: Σ B cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) cubical-sigma: Σ B presheaf-sigma: Σ B cc-adjoin-cube: (v;u) psc-adjoin-set: (v;u) cubical-fst: p.1 presheaf-fst: p.1
Lemmas referenced :  presheaf-fst_wf cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[p:\{X  \mvdash{}  \_:\mSigma{}  A  B\}].    (p.1  \mmember{}  \{X  \mvdash{}  \_:A\})



Date html generated: 2020_05_20-PM-02_27_01
Last ObjectModification: 2020_04_03-PM-08_37_21

Theory : cubical!type!theory


Home Index