Nuprl Lemma : composition-structure-cumulativity
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. (Gamma +⊢ Compositon(A) ⊆r Gamma ⊢ Compositon(A))
Proof
Definitions occuring in Statement :
composition-structure: Gamma ⊢ Compositon(A)
,
cubical-type: {X ⊢ _}
,
cubical_set: CubicalSet
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
composition-structure: Gamma ⊢ Compositon(A)
,
all: ∀x:A. B[x]
,
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
,
cube_set_map: A ⟶ B
,
psc_map: A ⟶ B
,
nat-trans: nat-trans(C;D;F;G)
,
cat-ob: cat-ob(C)
,
pi1: fst(t)
,
op-cat: op-cat(C)
,
spreadn: spread4,
cube-cat: CubeCat
,
fset: fset(T)
,
quotient: x,y:A//B[x; y]
,
cat-arrow: cat-arrow(C)
,
pi2: snd(t)
,
type-cat: TypeCat
,
names-hom: I ⟶ J
,
cat-comp: cat-comp(C)
,
compose: f o g
,
prop: ℙ
Lemmas referenced :
composition-function-cumulativity,
cubical_set_cumulativity-i-j,
subtype_rel_self,
cube_set_map_wf,
cube-context-adjoin_wf,
interval-type_wf,
uniform-comp-function_wf,
composition-structure_wf,
cubical-type_wf,
cubical_set_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
lambdaEquality_alt,
sqequalHypSubstitution,
setElimination,
thin,
rename,
dependent_set_memberEquality_alt,
hypothesisEquality,
applyEquality,
extract_by_obid,
dependent_functionElimination,
hypothesis,
sqequalRule,
lambdaFormation_alt,
instantiate,
isectElimination,
because_Cache,
universeIsType,
inhabitedIsType,
axiomEquality,
isect_memberEquality_alt,
isectIsTypeImplies
Latex:
\mforall{}[Gamma:j\mvdash{}]. \mforall{}[A:\{Gamma \mvdash{} \_\}]. (Gamma +\mvdash{} Compositon(A) \msubseteq{}r Gamma \mvdash{} Compositon(A))
Date html generated:
2020_05_20-PM-04_22_29
Last ObjectModification:
2020_04_14-AM-01_26_01
Theory : cubical!type!theory
Home
Index