Nuprl Lemma : composition-structure-cumulativity

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}].  (Gamma +⊢ Compositon(A) ⊆Gamma ⊢ Compositon(A))


Proof




Definitions occuring in Statement :  composition-structure: Gamma ⊢ Compositon(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B composition-structure: Gamma ⊢ Compositon(A) all: x:A. B[x] uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g prop:
Lemmas referenced :  composition-function-cumulativity cubical_set_cumulativity-i-j subtype_rel_self cube_set_map_wf cube-context-adjoin_wf interval-type_wf uniform-comp-function_wf composition-structure_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt hypothesisEquality applyEquality extract_by_obid dependent_functionElimination hypothesis sqequalRule lambdaFormation_alt instantiate isectElimination because_Cache universeIsType inhabitedIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    (Gamma  +\mvdash{}  Compositon(A)  \msubseteq{}r  Gamma  \mvdash{}  Compositon(A))



Date html generated: 2020_05_20-PM-04_22_29
Last ObjectModification: 2020_04_14-AM-01_26_01

Theory : cubical!type!theory


Home Index