Nuprl Lemma : pi_comp_wf2

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[cA:X +⊢ Compositon(A)]. ∀[cB:X.A +⊢ Compositon(B)].
  (pi_comp(X;A;cA;cB) ∈ X ⊢ Compositon(ΠB))


Proof




Definitions occuring in Statement :  pi_comp: pi_comp(X;A;cA;cB) composition-structure: Gamma ⊢ Compositon(A) cubical-pi: ΠB cube-context-adjoin: X.A cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T composition-structure: Gamma ⊢ Compositon(A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) all: x:A. B[x] subtype_rel: A ⊆B csm-id-adjoin: [u] csm-id: 1(X) prop: constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} csm+: tau+ cubical-type: {X ⊢ _} cc-snd: q csm-ap-type: (AF)s interval-1: 1(𝕀) cc-fst: p interval-type: 𝕀 csm-comp: F csm-ap: (s)x csm-adjoin: (s;u) compose: g uimplies: supposing a guard: {T} implies:  Q pi_comp: pi_comp(X;A;cA;cB) csm-comp-structure: (cA)tau constant-cubical-type: (X) squash: T true: True pi2: snd(t) pi1: fst(t) let: let interval-0: 0(𝕀) cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) csm-ap-term: (t)s iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cubical-pi: ΠB composition-function: composition-function{j:l,i:l}(Gamma;A)
Lemmas referenced :  pi_comp_wf constrained-cubical-term_wf csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cubical-pi_wf csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-ap-term_wf context-subset_wf csm-context-subset-subtype3 istype-cubical-term face-type_wf cube_set_map_wf uniform-comp-function_wf composition-structure_wf cubical-type_wf cubical_set_wf csm-cubical-pi csm-id-adjoin_wf-interval-1 csm+_wf cube_set_map_cumulativity-i-j csm-id-adjoin_wf interval-1_wf csm-adjoin_wf csm-comp_wf cc-fst_wf cc-snd_wf cubical-term-eqcd subset-cubical-type thin-context-subset-adjoin sub_cubical_set_functionality context-subset-is-subset interval-0_wf equal_wf equal_functionality_wrt_subtype_rel2 revfill-1 csm+_wf_interval csm-comp-structure_wf subtype_rel-equal csm-interval-type revfill_wf cubical-term_wf squash_wf true_wf subtype_rel_self istype-universe cubical-type-cumulativity cubical-app_wf cubical-lambda_wf subset-cubical-term2 sub_cubical_set_self csm-context-subset-subtype2 context-adjoin-subset cubical-pi-subset-adjoin2 csm-comp-type subset-cubical-term cubical-pi-p csm-cubical-app thin-context-subset cubical-pi-context-subset cubical-pi-subset iff_weakening_equal csm-face-type context-adjoin-subset0 comp_term_wf csm-cubical-lambda csm-comp_term csm-revfill context-subset-map cube_set_map_subtype2 cubical-app_wf-csm cube_set_map_subtype3 csm-constrained-cubical-term context-subset-term-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt dependent_set_memberEquality_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaFormation_alt universeIsType instantiate applyEquality because_Cache sqequalRule inhabitedIsType dependent_functionElimination applyLambdaEquality setElimination rename productElimination equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality_alt cumulativity universeEquality hyp_replacement independent_functionElimination imageElimination Error :memTop,  natural_numberEquality imageMemberEquality baseClosed equalityIstype sqequalBase independent_pairFormation productIsType functionEquality

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[cA:X  +\mvdash{}  Compositon(A)].  \mforall{}[cB:X.A  +\mvdash{}  Compositon(B)].
    (pi\_comp(X;A;cA;cB)  \mmember{}  X  \mvdash{}  Compositon(\mPi{}A  B))



Date html generated: 2020_05_20-PM-05_07_48
Last ObjectModification: 2020_04_20-PM-02_31_25

Theory : cubical!type!theory


Home Index