Nuprl Lemma : pi_comp_wf2
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[cA:X +⊢ Compositon(A)]. ∀[cB:X.A +⊢ Compositon(B)].
  (pi_comp(X;A;cA;cB) ∈ X ⊢ Compositon(ΠA B))
Proof
Definitions occuring in Statement : 
pi_comp: pi_comp(X;A;cA;cB)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
cubical-pi: ΠA B
, 
cube-context-adjoin: X.A
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
prop: ℙ
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
csm+: tau+
, 
cubical-type: {X ⊢ _}
, 
cc-snd: q
, 
csm-ap-type: (AF)s
, 
interval-1: 1(𝕀)
, 
cc-fst: p
, 
interval-type: 𝕀
, 
csm-comp: G o F
, 
csm-ap: (s)x
, 
csm-adjoin: (s;u)
, 
compose: f o g
, 
uimplies: b supposing a
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
pi_comp: pi_comp(X;A;cA;cB)
, 
csm-comp-structure: (cA)tau
, 
constant-cubical-type: (X)
, 
squash: ↓T
, 
true: True
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
let: let, 
interval-0: 0(𝕀)
, 
cube_set_map: A ⟶ B
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-ob: cat-ob(C)
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
cube-cat: CubeCat
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
cat-arrow: cat-arrow(C)
, 
type-cat: TypeCat
, 
names-hom: I ⟶ J
, 
cat-comp: cat-comp(C)
, 
csm-ap-term: (t)s
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
cubical-pi: ΠA B
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
Lemmas referenced : 
pi_comp_wf, 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cubical-pi_wf, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
csm-ap-term_wf, 
context-subset_wf, 
csm-context-subset-subtype3, 
istype-cubical-term, 
face-type_wf, 
cube_set_map_wf, 
uniform-comp-function_wf, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
csm-cubical-pi, 
csm-id-adjoin_wf-interval-1, 
csm+_wf, 
cube_set_map_cumulativity-i-j, 
csm-id-adjoin_wf, 
interval-1_wf, 
csm-adjoin_wf, 
csm-comp_wf, 
cc-fst_wf, 
cc-snd_wf, 
cubical-term-eqcd, 
subset-cubical-type, 
thin-context-subset-adjoin, 
sub_cubical_set_functionality, 
context-subset-is-subset, 
interval-0_wf, 
equal_wf, 
equal_functionality_wrt_subtype_rel2, 
revfill-1, 
csm+_wf_interval, 
csm-comp-structure_wf, 
subtype_rel-equal, 
csm-interval-type, 
revfill_wf, 
cubical-term_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
istype-universe, 
cubical-type-cumulativity, 
cubical-app_wf, 
cubical-lambda_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-context-subset-subtype2, 
context-adjoin-subset, 
cubical-pi-subset-adjoin2, 
csm-comp-type, 
subset-cubical-term, 
cubical-pi-p, 
csm-cubical-app, 
thin-context-subset, 
cubical-pi-context-subset, 
cubical-pi-subset, 
iff_weakening_equal, 
csm-face-type, 
context-adjoin-subset0, 
comp_term_wf, 
csm-cubical-lambda, 
csm-comp_term, 
csm-revfill, 
context-subset-map, 
cube_set_map_subtype2, 
cubical-app_wf-csm, 
cube_set_map_subtype3, 
csm-constrained-cubical-term, 
context-subset-term-subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
dependent_set_memberEquality_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaFormation_alt, 
universeIsType, 
instantiate, 
applyEquality, 
because_Cache, 
sqequalRule, 
inhabitedIsType, 
dependent_functionElimination, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaEquality_alt, 
cumulativity, 
universeEquality, 
hyp_replacement, 
independent_functionElimination, 
imageElimination, 
Error :memTop, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityIstype, 
sqequalBase, 
independent_pairFormation, 
productIsType, 
functionEquality
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[cA:X  +\mvdash{}  Compositon(A)].  \mforall{}[cB:X.A  +\mvdash{}  Compositon(B)].
    (pi\_comp(X;A;cA;cB)  \mmember{}  X  \mvdash{}  Compositon(\mPi{}A  B))
Date html generated:
2020_05_20-PM-05_07_48
Last ObjectModification:
2020_04_20-PM-02_31_25
Theory : cubical!type!theory
Home
Index