Nuprl Lemma : cube_set_map_subtype2

[X,Y,Z:j⊢].  j⟶ Z ⊆j⟶ supposing sub_cubical_set{j:l}(Y; X)


Proof




Definitions occuring in Statement :  sub_cubical_set: Y ⊆ X cube_set_map: A ⟶ B cubical_set: CubicalSet uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet sub_cubical_set: Y ⊆ X sub_ps_context: Y ⊆ X cube_set_map: A ⟶ B csm-id: 1(X) pscm-id: 1(X)
Lemmas referenced :  psc_map_subtype2 cube-cat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule

Latex:
\mforall{}[X,Y,Z:j\mvdash{}].    X  j{}\mrightarrow{}  Z  \msubseteq{}r  Y  j{}\mrightarrow{}  Z  supposing  sub\_cubical\_set\{j:l\}(Y;  X)



Date html generated: 2020_05_20-PM-01_43_57
Last ObjectModification: 2020_04_03-PM-04_12_44

Theory : cubical!type!theory


Home Index