Nuprl Lemma : psc_map_subtype2

[C:SmallCategory]. ∀[X,Y,Z:ps_context{j:l}(C)].
  psc_map{j:l}(C; X; Z) ⊆psc_map{j:l}(C; Y; Z) supposing sub_ps_context{j:l}(C; Y; X)


Proof




Definitions occuring in Statement :  sub_ps_context: Y ⊆ X psc_map: A ⟶ B ps_context: __⊢ uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B sub_ps_context: Y ⊆ X all: x:A. B[x] pscm-ap: (s)x pscm-id: 1(X) pscm-comp: F compose: g
Lemmas referenced :  psc_map_wf sub_ps_context_wf pscm-equal pscm-comp_wf subset-I_set pscm-ap_wf I_set_wf cat-ob_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt sqequalHypSubstitution equalityElimination equalityTransitivity hypothesis equalitySymmetry universeIsType thin instantiate extract_by_obid isectElimination hypothesisEquality applyEquality because_Cache sqequalRule axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType functionExtensionality independent_isectElimination dependent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Y,Z:ps\_context\{j:l\}(C)].
    psc\_map\{j:l\}(C;  X;  Z)  \msubseteq{}r  psc\_map\{j:l\}(C;  Y;  Z)  supposing  sub\_ps\_context\{j:l\}(C;  Y;  X)



Date html generated: 2020_05_20-PM-01_25_07
Last ObjectModification: 2020_04_01-AM-11_51_07

Theory : presheaf!models!of!type!theory


Home Index