Nuprl Lemma : csm-revfill

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ Compositon(A)]. ∀[a1:{Gamma ⊢ _:(A)[1(𝕀)]}]. ∀[Delta:j⊢].
[s:Delta j⟶ Gamma].
  ((revfill(Gamma;cA;a1))s+ revfill(Delta;(cA)s+;(a1)s) ∈ {Delta.𝕀 ⊢ _:(A)s+})


Proof




Definitions occuring in Statement :  revfill: revfill(Gamma;cA;a1) csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) interval-1: 1(𝕀) interval-type: 𝕀 csm+: tau+ csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] revfill: revfill(Gamma;cA;a1) member: t ∈ T subtype_rel: A ⊆B guard: {T} constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] implies:  Q respects-equality: respects-equality(S;T) squash: T face-0: 0(𝔽) csm-ap-term: (t)s discrete-cubical-term: discr(t) interval-type: 𝕀 csm+: tau+
Lemmas referenced :  csm-face-0 empty-context-subset-lemma3 cube-context-adjoin_wf interval-type_wf trivial-constrained-term csm-ap-type_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-1 csm-rev_fill_term face-0_wf subtype_rel_sets_simple cubical-term_wf cubical-type-cumulativity2 equal_wf thin-context-subset context-subset_wf respects-equality-context-subset-term cube_set_map_wf composition-structure_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis instantiate hypothesisEquality equalityTransitivity equalitySymmetry applyEquality because_Cache lambdaEquality_alt universeIsType independent_isectElimination lambdaFormation_alt equalityIstype dependent_functionElimination independent_functionElimination applyLambdaEquality setElimination rename imageMemberEquality baseClosed imageElimination inhabitedIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  Compositon(A)].  \mforall{}[a1:\{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})]\}].
\mforall{}[Delta:j\mvdash{}].  \mforall{}[s:Delta  j{}\mrightarrow{}  Gamma].
    ((revfill(Gamma;cA;a1))s+  =  revfill(Delta;(cA)s+;(a1)s))



Date html generated: 2020_05_20-PM-04_53_05
Last ObjectModification: 2020_04_13-PM-09_50_09

Theory : cubical!type!theory


Home Index