Nuprl Lemma : revfill-1

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ Compositon(A)]. ∀[a1:{Gamma ⊢ _:(A)[1(𝕀)]}].
  ((revfill(Gamma;cA;a1))[1(𝕀)] a1 ∈ {Gamma ⊢ _:(A)[1(𝕀)]})


Proof




Definitions occuring in Statement :  revfill: revfill(Gamma;cA;a1) composition-structure: Gamma ⊢ Compositon(A) interval-1: 1(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] revfill: revfill(Gamma;cA;a1) member: t ∈ T subtype_rel: A ⊆B constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} uimplies: supposing a
Lemmas referenced :  cubical-term_wf csm-ap-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf csm-id-adjoin_wf-interval-1 cubical-type-cumulativity2 composition-structure_wf cubical-type_wf cubical_set_wf rev_fill_term_1 face-0_wf csm-face-0 empty-context-subset-lemma3 subset-cubical-term context-subset_wf context-subset-is-subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut hypothesis universeIsType thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality sqequalRule because_Cache Error :memTop,  equalityTransitivity equalitySymmetry dependent_set_memberEquality_alt equalityIstype inhabitedIsType independent_isectElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  Compositon(A)].  \mforall{}[a1:\{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})]\}].
    ((revfill(Gamma;cA;a1))[1(\mBbbI{})]  =  a1)



Date html generated: 2020_05_20-PM-04_53_19
Last ObjectModification: 2020_04_14-AM-11_56_58

Theory : cubical!type!theory


Home Index