Nuprl Lemma : revfill-1
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ Compositon(A)]. ∀[a1:{Gamma ⊢ _:(A)[1(𝕀)]}].
  ((revfill(Gamma;cA;a1))[1(𝕀)] = a1 ∈ {Gamma ⊢ _:(A)[1(𝕀)]})
Proof
Definitions occuring in Statement : 
revfill: revfill(Gamma;cA;a1)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
interval-1: 1(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
revfill: revfill(Gamma;cA;a1)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
uimplies: b supposing a
Lemmas referenced : 
cubical-term_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
csm-id-adjoin_wf-interval-1, 
cubical-type-cumulativity2, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
rev_fill_term_1, 
face-0_wf, 
csm-face-0, 
empty-context-subset-lemma3, 
subset-cubical-term, 
context-subset_wf, 
context-subset-is-subset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
hypothesis, 
universeIsType, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
because_Cache, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
equalityIstype, 
inhabitedIsType, 
independent_isectElimination
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  Compositon(A)].  \mforall{}[a1:\{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})]\}].
    ((revfill(Gamma;cA;a1))[1(\mBbbI{})]  =  a1)
Date html generated:
2020_05_20-PM-04_53_19
Last ObjectModification:
2020_04_14-AM-11_56_58
Theory : cubical!type!theory
Home
Index