Nuprl Lemma : cubical-pi-subset-adjoin2
∀[X,phi,A,B,C,D:Top].  (X, phi.C.D ⊢ ΠA B ~ X.C.D ⊢ ΠA B)
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
cubical-pi: ΠA B
, 
cube-context-adjoin: X.A
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
cube-context-adjoin: X.A
, 
cubical-pi: ΠA B
, 
context-subset: Gamma, phi
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
cubical-pi-family: cubical-pi-family(X;A;B;I;a)
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
I_cube_pair_redex_lemma, 
cube_set_restriction_pair_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
because_Cache, 
isect_memberFormation, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality
Latex:
\mforall{}[X,phi,A,B,C,D:Top].    (X,  phi.C.D  \mvdash{}  \mPi{}A  B  \msim{}  X.C.D  \mvdash{}  \mPi{}A  B)
Date html generated:
2017_01_10-AM-08_50_34
Last ObjectModification:
2016_12_11-PM-02_03_15
Theory : cubical!type!theory
Home
Index