Nuprl Lemma : cubical-pi-subset-adjoin2
∀[X,phi,A,B,C,D:Top]. (X, phi.C.D ⊢ ΠA B ~ X.C.D ⊢ ΠA B)
Proof
Definitions occuring in Statement :
context-subset: Gamma, phi
,
cubical-pi: ΠA B
,
cube-context-adjoin: X.A
,
uall: ∀[x:A]. B[x]
,
top: Top
,
sqequal: s ~ t
Definitions unfolded in proof :
cube-context-adjoin: X.A
,
cubical-pi: ΠA B
,
context-subset: Gamma, phi
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
top: Top
,
cubical-pi-family: cubical-pi-family(X;A;B;I;a)
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
I_cube_pair_redex_lemma,
cube_set_restriction_pair_lemma,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
sqequalRule,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
because_Cache,
isect_memberFormation,
sqequalAxiom,
isectElimination,
hypothesisEquality
Latex:
\mforall{}[X,phi,A,B,C,D:Top]. (X, phi.C.D \mvdash{} \mPi{}A B \msim{} X.C.D \mvdash{} \mPi{}A B)
Date html generated:
2017_01_10-AM-08_50_34
Last ObjectModification:
2016_12_11-PM-02_03_15
Theory : cubical!type!theory
Home
Index