Nuprl Lemma : pi_comp_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[cA:X +⊢ Compositon(A)]. ∀[cB:X.A +⊢ Compositon(B)].
  (pi_comp(X;A;cA;cB) ∈ composition-function{j:l,i:l}(X;ΠB))


Proof




Definitions occuring in Statement :  pi_comp: pi_comp(X;A;cA;cB) composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) cubical-pi: ΠB cube-context-adjoin: X.A cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pi_comp: pi_comp(X;A;cA;cB) composition-function: composition-function{j:l,i:l}(Gamma;A) subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] csm+: tau+ prop: guard: {T} implies:  Q csm-id-adjoin: [u] csm-id: 1(X) csm-comp: F csm-comp-structure: (cA)tau interval-type: 𝕀 compose: g cubical-type: {X ⊢ _} cc-fst: p csm-ap-type: (AF)s interval-1: 1(𝕀) cc-snd: q csm-adjoin: (s;u) csm-ap: (s)x constant-cubical-type: (X) squash: T true: True pi2: snd(t) pi1: fst(t) let: let interval-0: 0(𝕀) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) csm-ap-term: (t)s composition-structure: Gamma ⊢ Compositon(A) cubical-pi: ΠB iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  csm-ap-type_wf cube-context-adjoin_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j interval-type_wf csm+_wf cube_set_map_cumulativity-i-j subset-cubical-type context-subset_wf thin-context-subset-adjoin csm-context-subset-subtype3 sub_cubical_set_functionality context-subset-is-subset csm-cubical-pi csm-id-adjoin_wf interval-0_wf equal_wf cubical-type_wf csm-id-adjoin_wf-interval-0 cubical-pi_wf interval-1_wf csm-id-adjoin_wf-interval-1 equal_functionality_wrt_subtype_rel2 cubical-term-eqcd constrained-cubical-term_wf csm-ap-term_wf istype-cubical-term face-type_wf cube_set_map_wf composition-structure_wf cubical_set_wf revfill-1 csm+_wf_interval cc-fst_wf csm-comp-structure_wf subtype_rel-equal csm-interval-type cc-snd_wf revfill_wf cubical-term_wf squash_wf true_wf subtype_rel_self istype-universe cubical-type-cumulativity cubical-app_wf cubical-lambda_wf csm-adjoin_wf csm-comp_wf subset-cubical-term2 sub_cubical_set_self csm-context-subset-subtype2 thin-context-subset context-adjoin-subset cubical-pi-subset-adjoin2 csm-comp-type subset-cubical-term cubical-pi-p csm-cubical-app cubical-pi-context-subset cubical-pi-subset iff_weakening_equal csm-face-type context-adjoin-subset0 comp_term_wf sub_cubical_set_transitivity cubical-lambda-subset context-subset-adjoin-subtype context-adjoin-subset3 csm-id-adjoin-subset cubical-eta context-subset-term-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut lambdaEquality_alt thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule independent_isectElimination dependent_functionElimination hyp_replacement equalitySymmetry applyLambdaEquality equalityTransitivity independent_functionElimination cumulativity universeIsType universeEquality inhabitedIsType setElimination rename productElimination imageElimination Error :memTop,  natural_numberEquality imageMemberEquality baseClosed lambdaFormation_alt equalityIstype sqequalBase dependent_set_memberEquality_alt independent_pairFormation

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[cA:X  +\mvdash{}  Compositon(A)].  \mforall{}[cB:X.A  +\mvdash{}  Compositon(B)].
    (pi\_comp(X;A;cA;cB)  \mmember{}  composition-function\{j:l,i:l\}(X;\mPi{}A  B))



Date html generated: 2020_05_20-PM-05_03_30
Last ObjectModification: 2020_04_20-PM-01_58_29

Theory : cubical!type!theory


Home Index