Nuprl Lemma : contractible_comp_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[cA:X +⊢ Compositon(A)].  (contractible_comp(X;A;cA) ∈ X ⊢ Compositon(Contractible(A)))


Proof




Definitions occuring in Statement :  contractible_comp: contractible_comp(X;A;cA) composition-structure: Gamma ⊢ Compositon(A) contractible-type: Contractible(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  contractible-type: Contractible(A) uall: [x:A]. B[x] member: t ∈ T contractible_comp: contractible_comp(X;A;cA) subtype_rel: A ⊆B
Lemmas referenced :  sigma_comp_wf2 cubical-pi_wf cube-context-adjoin_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-ap-type_wf cc-fst_wf path-type_wf csm-ap-term_wf cc-snd_wf composition-structure-cumulativity pi_comp_wf2 csm-comp-structure_wf path_comp_wf composition-structure_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality because_Cache hypothesis equalityTransitivity equalitySymmetry axiomEquality universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[cA:X  +\mvdash{}  Compositon(A)].
    (contractible\_comp(X;A;cA)  \mmember{}  X  \mvdash{}  Compositon(Contractible(A)))



Date html generated: 2020_05_20-PM-05_14_03
Last ObjectModification: 2020_04_17-AM-00_16_02

Theory : cubical!type!theory


Home Index