Nuprl Lemma : path-type_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}].  X ⊢ (Path_A b)


Proof




Definitions occuring in Statement :  path-type: (Path_A b) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] path-type: (Path_A b) member: t ∈ T so_lambda: so_lambda3 so_apply: x[s1;s2;s3] uimplies: supposing a subtype_rel: A ⊆B pathtype: Path(A) cubical-fun: (A ⟶ B) all: x:A. B[x] cubical-fun-family: cubical-fun-family(X; A; B; I; a) prop: and: P ∧ Q lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt cubical-type-at: A(a) pi1: fst(t) interval-type: 𝕀 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) interval-presheaf: 𝕀 squash: T true: True
Lemmas referenced :  cubical-subset_wf pathtype_wf istype-cubical-type-at I_cube_wf path-restriction cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-term_wf cubical-type_wf cubical_set_wf cubical_type_at_pair_lemma equal_wf cubical-type-at_wf nh-id_wf dM0_wf subtype_rel_self interval-type_wf cube-set-restriction_wf subtype_rel-equal cube-set-restriction-id cubical-term-at_wf dM1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality_alt because_Cache universeIsType independent_isectElimination instantiate applyEquality dependent_functionElimination Error :memTop,  productEquality setElimination rename imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].    X  \mvdash{}  (Path\_A  a  b)



Date html generated: 2020_05_20-PM-03_14_36
Last ObjectModification: 2020_04_06-PM-05_35_52

Theory : cubical!type!theory


Home Index