Nuprl Lemma : path_comp_wf

[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[a,b:{G ⊢ _:A}]. ∀[cA:G ⊢ Compositon(A)].
  (path_comp(G;A;a;b;
             cA) ∈ G ⊢ Compositon((Path_A b)))


Proof




Definitions occuring in Statement :  path_comp: path_comp composition-structure: Gamma ⊢ Compositon(A) path-type: (Path_A b) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T composition-structure: Gamma ⊢ Compositon(A) prop: csm-ap-term: (t)s pi1: fst(t) pi2: snd(t) csm-id: 1(X) csm-id-adjoin: [u] interval-1: 1(𝕀) cubical-type: {X ⊢ _} csm-ap: (s)x csm-adjoin: (s;u) compose: g csm-comp-structure: (cA)tau csm-comp: F csm+: tau+ constant-cubical-type: (X) csm-ap-type: (AF)s cc-fst: p interval-type: 𝕀 cc-snd: q constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} true: True uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x] squash: T composition-function: composition-function{j:l,i:l}(Gamma;A) path_comp: path_comp interval-0: 0(𝕀) path-elim: path-elim(pth) istype: istype(T) cubical-term-at: u(a) context-subset: Gamma, phi respects-equality: respects-equality(S;T) term-to-pathtype: <>a cubical-subset: cubical-subset path-type: (Path_A b) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) path_term: path_term(phi; w; a; b; r)
Lemmas referenced :  uniform-comp-function_wf path-type_wf composition-structure_wf istype-cubical-term cubical-type_wf cubical_set_wf cube_set_map_wf cubical-type-cumulativity2 csm-id-adjoin_wf-interval-0 constrained-cubical-term_wf context-adjoin-subset4 csm-context-subset-subtype3 context-adjoin-subset1 sub_cubical_set_self sub_cubical_set_transitivity subset-cubical-term context-subset-map csm-context-subset-subtype2 csm-comp-structure_wf csm+_wf_interval csm-comp-structure-composition-function face-one_wf cc-snd_wf face-zero_wf csm-face-type face-type_wf face-or_wf comp_term_wf csm-interval-type cubical_set_cumulativity-i-j cc-fst_wf_interval csm+_wf cubical-term-eqcd iff_weakening_equal subtype_rel_self csm-ap-term_wf csm-ap-type_wf context-subset-is-subset sub_cubical_set_functionality subset-cubical-type csm-path-type interval-type_wf context-subset_wf cube-context-adjoin_wf istype-universe true_wf squash_wf equal_wf path_term_wf thin-context-subset-adjoin csm-face-or path_term-0 cubical-term_wf cc-fst_wf cubical-type-cumulativity cubical-path-app_wf path-term-equal csm-id-adjoin_wf-interval-1 cubical-path-app-sq context-subset-term-subtype thin-context-subset path-type-sub-pathtype path-type-subset interval-0_wf csm-id-adjoin_wf path-elim_wf cubical-path-app-0 subset-cubical-term2 cubical-term-equal nat_wf fset_wf I_cube_wf face-zero-eq-1 I_cube_pair_redex_lemma cubical-path-app-1 interval-1_wf face-one-eq-1 path-term_wf respects-equality-context-subset-term path_term-1 csm-face-zero csm-face-one context-1-subset face-one-interval-1 csm-id_wf csm_id_adjoin_fst_term_lemma sub_cubical_set_wf face-or-1 csm-path-term cc_snd_csm_id_adjoin_lemma path-term-1 face-zero-interval-0 face-1-or path-term-0 term-to-path_wf paths-equal pathtype_wf pathtype-subset term-to-pathtype_wf csm-id-adjoin-subset csm-context-subset-subtype path-term-case1 face-term-implies-or1 face-term-implies-subset context-adjoin-subset2 term-to-pathtype-eta path-type-subtype term-to-path-subset cubical_type_at_pair_lemma constrained-cubical-term-eqcd csm-constrained-cubical-term csm-paths-equal sub_cubical_set-cumulativity1 csm-comp_term csm-path_term csm-cubical-path-app subtype_rel-equal cube_set_map_cumulativity-i-j csm-pathtype csm-term-to-pathtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut dependent_set_memberEquality_alt sqequalHypSubstitution equalityTransitivity hypothesis equalitySymmetry universeIsType introduction extract_by_obid isectElimination thin hypothesisEquality because_Cache instantiate independent_pairFormation Error :memTop,  hyp_replacement rename setElimination cumulativity independent_functionElimination productElimination baseClosed imageMemberEquality natural_numberEquality independent_isectElimination dependent_functionElimination universeEquality imageElimination lambdaEquality_alt applyEquality sqequalRule functionExtensionality inhabitedIsType applyLambdaEquality equalityIstype lambdaFormation_alt equalityElimination promote_hyp functionEquality setEquality

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[a,b:\{G  \mvdash{}  \_:A\}].  \mforall{}[cA:G  \mvdash{}  Compositon(A)].
    (path\_comp(G;A;a;b;
                          cA)  \mmember{}  G  \mvdash{}  Compositon((Path\_A  a  b)))



Date html generated: 2020_05_20-PM-05_12_09
Last ObjectModification: 2020_05_01-PM-11_52_08

Theory : cubical!type!theory


Home Index