Nuprl Lemma : path_comp_wf
∀[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[a,b:{G ⊢ _:A}]. ∀[cA:G ⊢ Compositon(A)].
  (path_comp(G;A;a;b;
             cA) ∈ G ⊢ Compositon((Path_A a b)))
Proof
Definitions occuring in Statement : 
path_comp: path_comp, 
composition-structure: Gamma ⊢ Compositon(A)
, 
path-type: (Path_A a b)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
prop: ℙ
, 
csm-ap-term: (t)s
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
csm-id: 1(X)
, 
csm-id-adjoin: [u]
, 
interval-1: 1(𝕀)
, 
cubical-type: {X ⊢ _}
, 
csm-ap: (s)x
, 
csm-adjoin: (s;u)
, 
compose: f o g
, 
csm-comp-structure: (cA)tau
, 
csm-comp: G o F
, 
csm+: tau+
, 
constant-cubical-type: (X)
, 
csm-ap-type: (AF)s
, 
cc-fst: p
, 
interval-type: 𝕀
, 
cc-snd: q
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
true: True
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
path_comp: path_comp, 
interval-0: 0(𝕀)
, 
path-elim: path-elim(pth)
, 
istype: istype(T)
, 
cubical-term-at: u(a)
, 
context-subset: Gamma, phi
, 
respects-equality: respects-equality(S;T)
, 
term-to-pathtype: <>a
, 
cubical-subset: cubical-subset, 
path-type: (Path_A a b)
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
path_term: path_term(phi; w; a; b; r)
Lemmas referenced : 
uniform-comp-function_wf, 
path-type_wf, 
composition-structure_wf, 
istype-cubical-term, 
cubical-type_wf, 
cubical_set_wf, 
cube_set_map_wf, 
cubical-type-cumulativity2, 
csm-id-adjoin_wf-interval-0, 
constrained-cubical-term_wf, 
context-adjoin-subset4, 
csm-context-subset-subtype3, 
context-adjoin-subset1, 
sub_cubical_set_self, 
sub_cubical_set_transitivity, 
subset-cubical-term, 
context-subset-map, 
csm-context-subset-subtype2, 
csm-comp-structure_wf, 
csm+_wf_interval, 
csm-comp-structure-composition-function, 
face-one_wf, 
cc-snd_wf, 
face-zero_wf, 
csm-face-type, 
face-type_wf, 
face-or_wf, 
comp_term_wf, 
csm-interval-type, 
cubical_set_cumulativity-i-j, 
cc-fst_wf_interval, 
csm+_wf, 
cubical-term-eqcd, 
iff_weakening_equal, 
subtype_rel_self, 
csm-ap-term_wf, 
csm-ap-type_wf, 
context-subset-is-subset, 
sub_cubical_set_functionality, 
subset-cubical-type, 
csm-path-type, 
interval-type_wf, 
context-subset_wf, 
cube-context-adjoin_wf, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
path_term_wf, 
thin-context-subset-adjoin, 
csm-face-or, 
path_term-0, 
cubical-term_wf, 
cc-fst_wf, 
cubical-type-cumulativity, 
cubical-path-app_wf, 
path-term-equal, 
csm-id-adjoin_wf-interval-1, 
cubical-path-app-sq, 
context-subset-term-subtype, 
thin-context-subset, 
path-type-sub-pathtype, 
path-type-subset, 
interval-0_wf, 
csm-id-adjoin_wf, 
path-elim_wf, 
cubical-path-app-0, 
subset-cubical-term2, 
cubical-term-equal, 
nat_wf, 
fset_wf, 
I_cube_wf, 
face-zero-eq-1, 
I_cube_pair_redex_lemma, 
cubical-path-app-1, 
interval-1_wf, 
face-one-eq-1, 
path-term_wf, 
respects-equality-context-subset-term, 
path_term-1, 
csm-face-zero, 
csm-face-one, 
context-1-subset, 
face-one-interval-1, 
csm-id_wf, 
csm_id_adjoin_fst_term_lemma, 
sub_cubical_set_wf, 
face-or-1, 
csm-path-term, 
cc_snd_csm_id_adjoin_lemma, 
path-term-1, 
face-zero-interval-0, 
face-1-or, 
path-term-0, 
term-to-path_wf, 
paths-equal, 
pathtype_wf, 
pathtype-subset, 
term-to-pathtype_wf, 
csm-id-adjoin-subset, 
csm-context-subset-subtype, 
path-term-case1, 
face-term-implies-or1, 
face-term-implies-subset, 
context-adjoin-subset2, 
term-to-pathtype-eta, 
path-type-subtype, 
term-to-path-subset, 
cubical_type_at_pair_lemma, 
constrained-cubical-term-eqcd, 
csm-constrained-cubical-term, 
csm-paths-equal, 
sub_cubical_set-cumulativity1, 
csm-comp_term, 
csm-path_term, 
csm-cubical-path-app, 
subtype_rel-equal, 
cube_set_map_cumulativity-i-j, 
csm-pathtype, 
csm-term-to-pathtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
dependent_set_memberEquality_alt, 
sqequalHypSubstitution, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
instantiate, 
independent_pairFormation, 
Error :memTop, 
hyp_replacement, 
rename, 
setElimination, 
cumulativity, 
independent_functionElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
independent_isectElimination, 
dependent_functionElimination, 
universeEquality, 
imageElimination, 
lambdaEquality_alt, 
applyEquality, 
sqequalRule, 
functionExtensionality, 
inhabitedIsType, 
applyLambdaEquality, 
equalityIstype, 
lambdaFormation_alt, 
equalityElimination, 
promote_hyp, 
functionEquality, 
setEquality
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[a,b:\{G  \mvdash{}  \_:A\}].  \mforall{}[cA:G  \mvdash{}  Compositon(A)].
    (path\_comp(G;A;a;b;
                          cA)  \mmember{}  G  \mvdash{}  Compositon((Path\_A  a  b)))
Date html generated:
2020_05_20-PM-05_12_09
Last ObjectModification:
2020_05_01-PM-11_52_08
Theory : cubical!type!theory
Home
Index