Nuprl Lemma : csm-path-type

X,Delta:j⊢. ∀s:Delta j⟶ X. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}.
  (((Path_A b))s (Delta ⊢ Path_(A)s (a)s (b)s) ∈ {Delta ⊢ _})


Proof




Definitions occuring in Statement :  path-type: (Path_A b) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] path-type: (Path_A b) uall: [x:A]. B[x] member: t ∈ T so_lambda: so_lambda3 so_apply: x[s1;s2;s3] squash: T uimplies: supposing a subtype_rel: A ⊆B prop: pathtype: Path(A) csm-ap-type: (AF)s cubical-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) and: P ∧ Q lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt cubical-type-at: A(a) pi1: fst(t) interval-type: 𝕀 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) interval-presheaf: 𝕀 true: True implies:  Q guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  csm-cubical-subset cubical-subset_wf squash_wf cubical-type-restriction_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 istype-cubical-type-at I_cube_wf fset_wf nat_wf cubical-type_wf csm-pathtype cubical_type_at_pair_lemma csm-ap-term-at csm-ap-type-at equal_wf cubical-type-at_wf csm-ap_wf nh-id_wf dM0_wf subtype_rel_self interval-type_wf cube-set-restriction_wf subtype_rel-equal cube-set-restriction-id cubical-term-at_wf dM1_wf csm-ap-type_wf pathtype_wf cubical-term_wf cube_set_map_wf cubical_set_wf cubical-type-restriction-and cubical-type-restriction-eq csm-ap-term_wf names-hom_wf interval-type-at I_cube_pair_redex_lemma interval-type-ap-morph cubical_type_ap_morph_pair_lemma true_wf istype-universe csm-ap-restriction iff_weakening_equal cubical-type-ap-morph_wf nh-id-left nh-comp_wf dM-lift_wf2 nh-id-right dM-lift-0-sq csm-cubical-type-ap-morph dM-lift-1-sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis applyEquality lambdaEquality_alt imageElimination hypothesisEquality independent_isectElimination equalityTransitivity equalitySymmetry universeIsType instantiate cumulativity functionIsType universeEquality because_Cache dependent_functionElimination productEquality setElimination rename natural_numberEquality imageMemberEquality baseClosed inhabitedIsType independent_functionElimination hyp_replacement productElimination

Latex:
\mforall{}X,Delta:j\mvdash{}.  \mforall{}s:Delta  j{}\mrightarrow{}  X.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.
    (((Path\_A  a  b))s  =  (Delta  \mvdash{}  Path\_(A)s  (a)s  (b)s))



Date html generated: 2020_05_20-PM-03_15_21
Last ObjectModification: 2020_04_08-AM-11_25_44

Theory : cubical!type!theory


Home Index