Nuprl Lemma : csm-cubical-subset

[T,psi,s:Top].  (({t:T | ∀I,alpha. psi[I;alpha;t]})s {t:(T)s | ∀I,alpha. psi[I;(s)alpha;t]})


Proof




Definitions occuring in Statement :  cubical-subset: {t:T | ∀I,alpha. psi[I; alpha; t]} csm-ap-type: (AF)s csm-ap: (s)x uall: [x:A]. B[x] top: Top so_apply: x[s1;s2;s3] sqequal: t
Definitions unfolded in proof :  pi2: snd(t) cubical-type-ap-morph: (u f) so_apply: x[s1;s2;s3] csm-ap: (s)x so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] squash: T or: P ∨ Q guard: {T} prop: has-value: (a)↓ implies:  Q all: x:A. B[x] and: P ∧ Q strict4: strict4(F) uimplies: supposing a top: Top so_apply: x[s1;s2;s3;s4] member: t ∈ T so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) pi1: fst(t) cubical-type-at: A(a) cubical-subset: {t:T | ∀I,alpha. psi[I; alpha; t]} csm-ap-type: (AF)s uall: [x:A]. B[x]
Lemmas referenced :  top_wf strict4-spread is-exception_wf base_wf has-value_wf_base lifting-strict-spread
Rules used in proof :  because_Cache inlFormation exceptionSqequal imageElimination imageMemberEquality inrFormation applyExceptionCases hypothesisEquality closedConclusion baseApply hypothesis callbyvalueApply lambdaFormation independent_pairFormation independent_isectElimination voidEquality voidElimination isect_memberEquality baseClosed thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T,psi,s:Top].    ((\{t:T  |  \mforall{}I,alpha.  psi[I;alpha;t]\})s  \msim{}  \{t:(T)s  |  \mforall{}I,alpha.  psi[I;(s)alpha;t]\})



Date html generated: 2016_07_09-PM-01_31_48
Last ObjectModification: 2016_07_09-AM-11_08_04

Theory : cubical!type!theory


Home Index