Nuprl Lemma : cubical-type-restriction_wf

[X:j⊢]. ∀[T:{X ⊢ _}]. ∀[psi:I:fset(ℕ) ⟶ alpha:X(I) ⟶ T(alpha) ⟶ ℙ{[i' j']}].
  (cubical-type-restriction(X;T;I,a,t.psi[I;a;t]) ∈ ℙ{[i' j']})


Proof




Definitions occuring in Statement :  cubical-type-restriction: cubical-type-restriction cubical-type-at: A(a) cubical-type: {X ⊢ _} I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type-restriction: cubical-type-restriction prop: all: x:A. B[x] implies:  Q so_apply: x[s1;s2;s3]
Lemmas referenced :  fset_wf nat_wf names-hom_wf I_cube_wf cubical-type-at_wf cube-set-restriction_wf cubical-type-ap-morph_wf istype-cubical-type-at cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality cumulativity extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry functionIsType universeIsType universeEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T:\{X  \mvdash{}  \_\}].  \mforall{}[psi:I:fset(\mBbbN{})  {}\mrightarrow{}  alpha:X(I)  {}\mrightarrow{}  T(alpha)  {}\mrightarrow{}  \mBbbP{}\{[i'  |  j']\}].
    (cubical-type-restriction(X;T;I,a,t.psi[I;a;t])  \mmember{}  \mBbbP{}\{[i'  |  j']\})



Date html generated: 2020_05_20-PM-03_12_59
Last ObjectModification: 2020_04_07-PM-03_14_18

Theory : cubical!type!theory


Home Index