Nuprl Lemma : cubical-type-restriction_wf
∀[X:j⊢]. ∀[T:{X ⊢ _}]. ∀[psi:I:fset(ℕ) ⟶ alpha:X(I) ⟶ T(alpha) ⟶ ℙ{[i' | j']}].
  (cubical-type-restriction(X;T;I,a,t.psi[I;a;t]) ∈ ℙ{[i' | j']})
Proof
Definitions occuring in Statement : 
cubical-type-restriction: cubical-type-restriction, 
cubical-type-at: A(a)
, 
cubical-type: {X ⊢ _}
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2;s3]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-type-restriction: cubical-type-restriction, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
fset_wf, 
nat_wf, 
names-hom_wf, 
I_cube_wf, 
cubical-type-at_wf, 
cube-set-restriction_wf, 
cubical-type-ap-morph_wf, 
istype-cubical-type-at, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
cumulativity, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
universeEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T:\{X  \mvdash{}  \_\}].  \mforall{}[psi:I:fset(\mBbbN{})  {}\mrightarrow{}  alpha:X(I)  {}\mrightarrow{}  T(alpha)  {}\mrightarrow{}  \mBbbP{}\{[i'  |  j']\}].
    (cubical-type-restriction(X;T;I,a,t.psi[I;a;t])  \mmember{}  \mBbbP{}\{[i'  |  j']\})
Date html generated:
2020_05_20-PM-03_12_59
Last ObjectModification:
2020_04_07-PM-03_14_18
Theory : cubical!type!theory
Home
Index