Nuprl Lemma : dM-lift-1-sq

[I,J,f:Top].  (dM-lift(I;J;f) 1)


Proof




Definitions occuring in Statement :  dM-lift: dM-lift(I;J;f) dM1: 1 uall: [x:A]. B[x] top: Top apply: a sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dM-lift: dM-lift(I;J;f) free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra-property free-dist-lattice-property lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum dM1: 1 lattice-1: 1 record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt fset-singleton: {x} cons: [a b] nil: [] it: fset-union: x ⋃ y l-union: as ⋃ bs insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L lattice-join: a ∨ b fset-ac-lub: fset-ac-lub(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) lattice-0: 0 empty-fset: {} lattice-fset-meet: /\(s) fset-minimal: fset-minimal(x,y.less[x; y];s;a) fset-null: fset-null(s) null: null(as) f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys) band: p ∧b q deq-f-subset: deq-f-subset(eq) isl: isl(x) decidable__f-subset decidable__all_fset decidable_functionality iff_preserves_decidability decidable__assert bnot: ¬bb deq-fset: deq-fset(eq) decidable__equal_fset decidable__and2 decidable__and
Lemmas referenced :  top_wf free-DeMorgan-algebra-property free-dist-lattice-property decidable__f-subset decidable__all_fset decidable_functionality iff_preserves_decidability decidable__assert decidable__equal_fset decidable__and2 decidable__and
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis sqequalAxiom extract_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[I,J,f:Top].    (dM-lift(I;J;f)  1  \msim{}  1)



Date html generated: 2018_05_23-AM-08_27_47
Last ObjectModification: 2018_05_20-PM-05_35_53

Theory : cubical!type!theory


Home Index