Nuprl Lemma : path-term-equal
∀X:j⊢. ∀psi:{X ⊢ _:𝔽}.
  ∀[r:{X ⊢ _:𝕀}]
    ∀T:{X ⊢ _}. ∀a,b:{X ⊢ _:T}. ∀w:{X, psi ⊢ _:(Path_T a b)}.
      ∀[z:{X ⊢ _:T}]
        path-term(psi;w;a;b;r) = z ∈ {X, (psi ∨ ((r=0) ∨ (r=1))) ⊢ _:T} 
        supposing (w @ r = z ∈ {X, psi ⊢ _:T}) ∧ (a = z ∈ {X, (r=0) ⊢ _:T}) ∧ (b = z ∈ {X, (r=1) ⊢ _:T})
Proof
Definitions occuring in Statement : 
path-term: path-term(phi;w;a;b;r)
, 
cubical-path-app: pth @ r
, 
path-type: (Path_A a b)
, 
context-subset: Gamma, phi
, 
face-zero: (i=0)
, 
face-one: (i=1)
, 
face-or: (a ∨ b)
, 
face-type: 𝔽
, 
interval-type: 𝕀
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
guard: {T}
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
top: Top
, 
implies: P 
⇒ Q
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
same-cubical-term: X ⊢ u=v:A
, 
path-term: path-term(phi;w;a;b;r)
Lemmas referenced : 
cubical-path-app_wf, 
context-subset_wf, 
thin-context-subset, 
context-subset-term-subtype, 
subset-cubical-term2, 
sub_cubical_set_self, 
path-type_wf, 
subset-cubical-term, 
context-subset-is-subset, 
path-type-subset, 
interval-type_wf, 
cubical-term_wf, 
face-zero_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
face-one_wf, 
cubical-type_wf, 
face-type_wf, 
cubical_set_wf, 
istype-void, 
context-subset-term-0, 
face-0_wf, 
sub_cubical_set_transitivity, 
face-and_wf, 
context-iterated-subset, 
subset-cubical-type, 
context-iterated-subset0, 
context-subset-swap, 
sub_cubical_set_functionality2, 
sub_cubical_set_wf, 
squash_wf, 
true_wf, 
face-one-and-zero, 
iff_weakening_equal, 
case-term-same2, 
face-or_wf, 
case-term_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
equalityIstype, 
inhabitedIsType, 
universeIsType, 
instantiate, 
dependent_set_memberEquality_alt, 
productElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
lambdaEquality_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}psi:\{X  \mvdash{}  \_:\mBbbF{}\}.
    \mforall{}[r:\{X  \mvdash{}  \_:\mBbbI{}\}]
        \mforall{}T:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:T\}.  \mforall{}w:\{X,  psi  \mvdash{}  \_:(Path\_T  a  b)\}.
            \mforall{}[z:\{X  \mvdash{}  \_:T\}].  path-term(psi;w;a;b;r)  =  z  supposing  (w  @  r  =  z)  \mwedge{}  (a  =  z)  \mwedge{}  (b  =  z)
Date html generated:
2020_05_20-PM-05_09_45
Last ObjectModification:
2020_04_10-AM-11_41_34
Theory : cubical!type!theory
Home
Index