Nuprl Lemma : face-one-and-zero

[X:j⊢]. ∀[z:{X ⊢ _:𝕀}].  (((z=1) ∧ (z=0)) 0(𝔽) ∈ {X ⊢ _:𝔽})


Proof




Definitions occuring in Statement :  face-zero: (i=0) face-one: (i=1) face-and: (a ∧ b) face-0: 0(𝔽) face-type: 𝔽 interval-type: 𝕀 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a face-0: 0(𝔽) face-zero: (i=0) face-one: (i=1) face-and: (a ∧ b) cubical-term-at: u(a) cubical-term: {X ⊢ _:A} subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) interval-type: 𝕀 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) interval-presheaf: 𝕀 lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) face-type: 𝔽 face-presheaf: 𝔽 true: True squash: T all: x:A. B[x] guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  I_cube_wf fset_wf nat_wf cubical-term-equal face-type_wf face-and_wf face-one_wf face-zero_wf cubical-term_wf interval-type_wf cubical_set_wf cubical-type-at_wf_face-type subtype_rel_self lattice-point_wf free-DeMorgan-lattice_wf names_wf names-deq_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf lattice-0_wf face_lattice_wf squash_wf true_wf istype-universe dM-to-FL-neg iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis equalityTransitivity equalitySymmetry independent_isectElimination universeIsType instantiate sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType Error :memTop,  applyEquality setElimination rename lambdaEquality_alt productEquality cumulativity isectEquality because_Cache natural_numberEquality imageElimination universeEquality dependent_functionElimination imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[z:\{X  \mvdash{}  \_:\mBbbI{}\}].    (((z=1)  \mwedge{}  (z=0))  =  0(\mBbbF{}))



Date html generated: 2020_05_20-PM-02_43_14
Last ObjectModification: 2020_04_04-PM-04_57_17

Theory : cubical!type!theory


Home Index