Nuprl Lemma : dM-to-FL-neg
∀[I:fset(ℕ)]
  ∀x:Point(free-DeMorgan-lattice(names(I);NamesDeq)). (dM-to-FL(I;x) ∧ dM-to-FL(I;¬(x)) = 0 ∈ Point(face_lattice(I)))
Proof
Definitions occuring in Statement : 
dM-to-FL: dM-to-FL(I;z)
, 
face_lattice: face_lattice(I)
, 
names-deq: NamesDeq
, 
names: names(I)
, 
dm-neg: ¬(x)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
lattice-0: 0
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
free-dml-deq: free-dml-deq(T;eq)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
all: ∀x:A. B[x]
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
top: Top
, 
lattice-meet: a ∧ b
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
fset-constrained-ac-glb: glb(P;ac1;ac2)
, 
fset-minimals: fset-minimals(x,y.less[x; y]; s)
, 
fset-filter: {x ∈ s | P[x]}
, 
filter: filter(P;l)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
dM-to-FL: dM-to-FL(I;z)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
fset-image: f"(s)
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
lattice-0: 0
, 
not: ¬A
, 
false: False
, 
true: True
, 
squash: ↓T
, 
bdd-lattice: BoundedLattice
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
lattice-fset-meet: /\(s)
, 
cand: A c∧ B
, 
dminc: <i>
, 
dmopp: <1-i>
, 
dM_opp: <1-x>
, 
dM_inc: <x>
, 
lattice-axioms: lattice-axioms(l)
, 
bounded-lattice-axioms: bounded-lattice-axioms(l)
Lemmas referenced : 
deq-implies, 
lattice-point_wf, 
free-DeMorgan-lattice_wf, 
names_wf, 
names-deq_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
free-dml-deq_wf, 
lattice-fset-meet_wf, 
free-dist-lattice_wf, 
union-deq_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
fset-image_wf, 
subtype_rel_self, 
deq_wf, 
free-dl-inc_wf, 
fset_wf, 
deq-fset_wf, 
nat_wf, 
dM-basis, 
subtype_rel-equal, 
dM_wf, 
DeMorgan-algebra-structure_wf, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra-axioms_wf, 
face_lattice_wf, 
dM-to-FL_wf, 
dm-neg_wf, 
lattice-0_wf, 
free-dl-point, 
istype-void, 
fset-induction, 
lattice-fset-join_wf, 
sq_stable__equal, 
fset-member_wf, 
fset-singleton_wf, 
squash_wf, 
true_wf, 
istype-universe, 
decidable_wf, 
bdd-lattice_wf, 
fset-image-add, 
iff_weakening_equal, 
lattice-fset-join-union, 
lattice-fset-join-singleton, 
bdd-distributive-lattice-subtype-distributive-lattice, 
dM-to-FL-properties, 
dm-neg-properties, 
distributive-lattice-distrib, 
reduce_nil_lemma, 
lattice-1_wf, 
lattice-0-meet, 
lattice-fset-meet-union, 
lattice-fset-meet-singleton, 
free-dma-point, 
dminc_wf, 
dmopp_wf, 
dm-neg-inc, 
dM-to-FL-inc, 
dM-to-FL-opp, 
FL-meet-0-1, 
dm-neg-opp, 
lattice-join-0, 
lattice-meet-0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
universeIsType, 
independent_isectElimination, 
independent_functionElimination, 
unionEquality, 
unionIsType, 
lambdaFormation_alt, 
dependent_functionElimination, 
axiomEquality, 
functionIsTypeImplies, 
hyp_replacement, 
applyLambdaEquality, 
setElimination, 
rename, 
isect_memberEquality_alt, 
voidElimination, 
functionIsType, 
equalityIsType1, 
natural_numberEquality, 
imageElimination, 
universeEquality, 
functionEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
productIsType, 
unionElimination
Latex:
\mforall{}[I:fset(\mBbbN{})]
    \mforall{}x:Point(free-DeMorgan-lattice(names(I);NamesDeq)).  (dM-to-FL(I;x)  \mwedge{}  dM-to-FL(I;\mneg{}(x))  =  0)
Date html generated:
2019_11_04-PM-05_34_04
Last ObjectModification:
2018_11_10-AM-09_35_34
Theory : cubical!type!theory
Home
Index