Nuprl Lemma : dM-to-FL-neg

[I:fset(ℕ)]
  ∀x:Point(free-DeMorgan-lattice(names(I);NamesDeq)). (dM-to-FL(I;x) ∧ dM-to-FL(I;¬(x)) 0 ∈ Point(face_lattice(I)))


Proof




Definitions occuring in Statement :  dM-to-FL: dM-to-FL(I;z) face_lattice: face_lattice(I) names-deq: NamesDeq names: names(I) dm-neg: ¬(x) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) lattice-0: 0 lattice-meet: a ∧ b lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a implies:  Q guard: {T} free-dml-deq: free-dml-deq(T;eq) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) all: x:A. B[x] lattice-point: Point(l) record-select: r.x free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) DeMorgan-algebra: DeMorganAlgebra top: Top lattice-meet: a ∧ b face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) fset-constrained-ac-glb: glb(P;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum dM-to-FL: dM-to-FL(I;z) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) fset-image: f"(s) empty-fset: {} nil: [] it: lattice-0: 0 not: ¬A false: False true: True squash: T bdd-lattice: BoundedLattice iff: ⇐⇒ Q rev_implies:  Q lattice-fset-meet: /\(s) cand: c∧ B dminc: <i> dmopp: <1-i> dM_opp: <1-x> dM_inc: <x> lattice-axioms: lattice-axioms(l) bounded-lattice-axioms: bounded-lattice-axioms(l)
Lemmas referenced :  deq-implies lattice-point_wf free-DeMorgan-lattice_wf names_wf names-deq_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf free-dml-deq_wf lattice-fset-meet_wf free-dist-lattice_wf union-deq_wf bdd-distributive-lattice-subtype-bdd-lattice fset-image_wf subtype_rel_self deq_wf free-dl-inc_wf fset_wf deq-fset_wf nat_wf dM-basis subtype_rel-equal dM_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf face_lattice_wf dM-to-FL_wf dm-neg_wf lattice-0_wf free-dl-point istype-void fset-induction lattice-fset-join_wf sq_stable__equal fset-member_wf fset-singleton_wf squash_wf true_wf istype-universe decidable_wf bdd-lattice_wf fset-image-add iff_weakening_equal lattice-fset-join-union lattice-fset-join-singleton bdd-distributive-lattice-subtype-distributive-lattice dM-to-FL-properties dm-neg-properties distributive-lattice-distrib reduce_nil_lemma lattice-1_wf lattice-0-meet lattice-fset-meet-union lattice-fset-meet-singleton free-dma-point dminc_wf dmopp_wf dm-neg-inc dM-to-FL-inc dM-to-FL-opp FL-meet-0-1 dm-neg-opp lattice-join-0 lattice-meet-0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule instantiate lambdaEquality_alt productEquality cumulativity inhabitedIsType equalityTransitivity equalitySymmetry because_Cache universeIsType independent_isectElimination independent_functionElimination unionEquality unionIsType lambdaFormation_alt dependent_functionElimination axiomEquality functionIsTypeImplies hyp_replacement applyLambdaEquality setElimination rename isect_memberEquality_alt voidElimination functionIsType equalityIsType1 natural_numberEquality imageElimination universeEquality functionEquality imageMemberEquality baseClosed productElimination independent_pairFormation dependent_set_memberEquality_alt productIsType unionElimination

Latex:
\mforall{}[I:fset(\mBbbN{})]
    \mforall{}x:Point(free-DeMorgan-lattice(names(I);NamesDeq)).  (dM-to-FL(I;x)  \mwedge{}  dM-to-FL(I;\mneg{}(x))  =  0)



Date html generated: 2019_11_04-PM-05_34_04
Last ObjectModification: 2018_11_10-AM-09_35_34

Theory : cubical!type!theory


Home Index