Nuprl Lemma : fset-image-add
∀[T,A:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[f:T ⟶ A]. ∀[x:T]. ∀[s:fset(T)].
  (f"(fset-add(eqt;x;s)) = {f x} ⋃ f"(s) ∈ fset(A))
Proof
Definitions occuring in Statement : 
fset-image: f"(s)
, 
fset-add: fset-add(eq;x;s)
, 
fset-singleton: {x}
, 
fset-union: x ⋃ y
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
fset-add: fset-add(eq;x;s)
Lemmas referenced : 
fset-image-singleton, 
fset-singleton_wf, 
equal_wf, 
squash_wf, 
true_wf, 
fset_wf, 
fset-image_wf, 
fset-add_wf, 
fset-image-union, 
iff_weakening_equal, 
fset-union_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
axiomEquality, 
functionEquality
Latex:
\mforall{}[T,A:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[x:T].  \mforall{}[s:fset(T)].
    (f"(fset-add(eqt;x;s))  =  \{f  x\}  \mcup{}  f"(s))
Date html generated:
2017_04_17-AM-09_20_57
Last ObjectModification:
2017_02_27-PM-05_23_55
Theory : finite!sets
Home
Index