Nuprl Lemma : fset-image-add

[T,A:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[f:T ⟶ A]. ∀[x:T]. ∀[s:fset(T)].
  (f"(fset-add(eqt;x;s)) {f x} ⋃ f"(s) ∈ fset(A))


Proof




Definitions occuring in Statement :  fset-image: f"(s) fset-add: fset-add(eq;x;s) fset-singleton: {x} fset-union: x ⋃ y fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q fset-add: fset-add(eq;x;s)
Lemmas referenced :  fset-image-singleton fset-singleton_wf equal_wf squash_wf true_wf fset_wf fset-image_wf fset-add_wf fset-image-union iff_weakening_equal fset-union_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis cumulativity hypothesisEquality applyEquality functionExtensionality lambdaEquality imageElimination equalityTransitivity equalitySymmetry because_Cache natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination hyp_replacement applyLambdaEquality axiomEquality functionEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[x:T].  \mforall{}[s:fset(T)].
    (f"(fset-add(eqt;x;s))  =  \{f  x\}  \mcup{}  f"(s))



Date html generated: 2017_04_17-AM-09_20_57
Last ObjectModification: 2017_02_27-PM-05_23_55

Theory : finite!sets


Home Index