Nuprl Lemma : lattice-0-meet

[l:BoundedLattice]. ∀[x:Point(l)].  (x ∧ 0 ∈ Point(l))


Proof




Definitions occuring in Statement :  bdd-lattice: BoundedLattice lattice-0: 0 lattice-meet: a ∧ b lattice-point: Point(l) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: squash: T subtype_rel: A ⊆B and: P ∧ Q true: True bdd-lattice: BoundedLattice so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a
Lemmas referenced :  lattice-meet-0 equal_wf squash_wf true_wf lattice_properties bdd-lattice-subtype-lattice lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf bdd-lattice_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality hyp_replacement equalitySymmetry sqequalRule applyEquality lambdaEquality imageElimination equalityTransitivity universeEquality because_Cache productElimination natural_numberEquality imageMemberEquality baseClosed instantiate productEquality cumulativity independent_isectElimination

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[x:Point(l)].    (x  \mwedge{}  0  =  0)



Date html generated: 2016_10_26-PM-00_54_36
Last ObjectModification: 2016_07_12-AM-08_56_56

Theory : lattices


Home Index