Nuprl Lemma : lattice-0-meet
∀[l:BoundedLattice]. ∀[x:Point(l)].  (x ∧ 0 = 0 ∈ Point(l))
Proof
Definitions occuring in Statement : 
bdd-lattice: BoundedLattice
, 
lattice-0: 0
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
true: True
, 
bdd-lattice: BoundedLattice
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
lattice-meet-0, 
equal_wf, 
squash_wf, 
true_wf, 
lattice_properties, 
bdd-lattice-subtype-lattice, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
bdd-lattice_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hyp_replacement, 
equalitySymmetry, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
because_Cache, 
productElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
productEquality, 
cumulativity, 
independent_isectElimination
Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[x:Point(l)].    (x  \mwedge{}  0  =  0)
Date html generated:
2016_10_26-PM-00_54_36
Last ObjectModification:
2016_07_12-AM-08_56_56
Theory : lattices
Home
Index