Nuprl Lemma : cubical-path-app_wf
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[t:{X ⊢ _:(Path_A a b)}]. ∀[r:{X ⊢ _:𝕀}].  (t @ r ∈ {X ⊢ _:A})
Proof
Definitions occuring in Statement : 
cubical-path-app: pth @ r
, 
path-type: (Path_A a b)
, 
interval-type: 𝕀
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-path-app: pth @ r
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
cubicalpath-app_wf, 
path-type-subtype, 
cubical-term_wf, 
interval-type_wf, 
path-type_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
instantiate, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[t:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].  \mforall{}[r:\{X  \mvdash{}  \_:\mBbbI{}\}].
    (t  @  r  \mmember{}  \{X  \mvdash{}  \_:A\})
Date html generated:
2020_05_20-PM-03_16_40
Last ObjectModification:
2020_04_06-PM-06_31_59
Theory : cubical!type!theory
Home
Index