Nuprl Lemma : cubical-path-app_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[t:{X ⊢ _:(Path_A b)}]. ∀[r:{X ⊢ _:𝕀}].  (t r ∈ {X ⊢ _:A})


Proof




Definitions occuring in Statement :  cubical-path-app: pth r path-type: (Path_A b) interval-type: 𝕀 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-path-app: pth r subtype_rel: A ⊆B
Lemmas referenced :  cubicalpath-app_wf path-type-subtype cubical-term_wf interval-type_wf path-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType instantiate isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[t:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].  \mforall{}[r:\{X  \mvdash{}  \_:\mBbbI{}\}].
    (t  @  r  \mmember{}  \{X  \mvdash{}  \_:A\})



Date html generated: 2020_05_20-PM-03_16_40
Last ObjectModification: 2020_04_06-PM-06_31_59

Theory : cubical!type!theory


Home Index