Nuprl Lemma : cubicalpath-app_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[t:{X ⊢ _:Path(A)}]. ∀[r:{X ⊢ _:𝕀}].  (t r ∈ {X ⊢ _:A})


Proof




Definitions occuring in Statement :  cubicalpath-app: pth r pathtype: Path(A) interval-type: 𝕀 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  pathtype: Path(A) uall: [x:A]. B[x] member: t ∈ T cubicalpath-app: pth r subtype_rel: A ⊆B
Lemmas referenced :  cubical-app_wf_fun interval-type_wf cubical-term_wf cubical-fun_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType instantiate isect_memberEquality_alt isectIsTypeImplies inhabitedIsType applyEquality

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[t:\{X  \mvdash{}  \_:Path(A)\}].  \mforall{}[r:\{X  \mvdash{}  \_:\mBbbI{}\}].    (t  @  r  \mmember{}  \{X  \mvdash{}  \_:A\})



Date html generated: 2020_05_20-PM-03_14_13
Last ObjectModification: 2020_04_06-PM-05_17_48

Theory : cubical!type!theory


Home Index