Nuprl Lemma : context-iterated-subset0

[X:j⊢]. ∀[xx,yy:{X ⊢ _:𝔽}].  sub_cubical_set{j:l}(X, xx, yy; X)


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} sub_cubical_set: Y ⊆ X cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a and: P ∧ Q sub_cubical_set: Y ⊆ X
Lemmas referenced :  sub_cubical_set_transitivity context-subset_wf subset-cubical-term context-subset-is-subset face-type_wf context-subset-term-subtype cubical-term_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality because_Cache independent_isectElimination instantiate sqequalRule independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[xx,yy:\{X  \mvdash{}  \_:\mBbbF{}\}].    sub\_cubical\_set\{j:l\}(X,  xx,  yy;  X)



Date html generated: 2020_05_20-PM-02_56_10
Last ObjectModification: 2020_04_04-PM-05_10_13

Theory : cubical!type!theory


Home Index