Nuprl Lemma : case-term-same2

[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma ⊢ _}]. ∀[u:{Gamma, phi ⊢ _:A}]. ∀[v:{Gamma, psi ⊢ _:A}].
[w:{Gamma ⊢ _:A}].
  (Gamma, (phi ∨ psi) ⊢ (u ∨ v)=w:A) supposing (Gamma, phi ⊢ u=w:A and Gamma, psi ⊢ v=w:A)


Proof




Definitions occuring in Statement :  case-term: (u ∨ v) same-cubical-term: X ⊢ u=v:A context-subset: Gamma, phi face-or: (a ∨ b) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  same-cubical-term: X ⊢ u=v:A uall: [x:A]. B[x] uimplies: supposing a case-term: (u ∨ v) cubical-term-at: u(a) member: t ∈ T subtype_rel: A ⊆B guard: {T} context-subset: Gamma, phi all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q
Lemmas referenced :  I_cube_wf context-subset_wf face-or_wf fset_wf nat_wf cubical-term-equal thin-context-subset context-subset-term-subtype subset-cubical-term context-subset-is-subset cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf face-type_wf cubical_set_wf I_cube_pair_redex_lemma face-or-eq-1 fl-eq_wf cubical-term-at_wf subtype_rel_self lattice-point_wf face_lattice_wf lattice-1_wf eqtt_to_assert assert-fl-eq subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt equalitySymmetry cut functionExtensionality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache applyEquality equalityTransitivity independent_isectElimination equalityIstype universeIsType instantiate dependent_functionElimination Error :memTop,  setElimination rename productElimination independent_functionElimination inhabitedIsType lambdaFormation_alt unionElimination equalityElimination lambdaEquality_alt productEquality cumulativity isectEquality dependent_pairFormation_alt promote_hyp voidElimination dependent_set_memberEquality_alt applyLambdaEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[u:\{Gamma,  phi  \mvdash{}  \_:A\}].
\mforall{}[v:\{Gamma,  psi  \mvdash{}  \_:A\}].  \mforall{}[w:\{Gamma  \mvdash{}  \_:A\}].
    (Gamma,  (phi  \mvee{}  psi)  \mvdash{}  (u  \mvee{}  v)=w:A)  supposing  (Gamma,  phi  \mvdash{}  u=w:A  and  Gamma,  psi  \mvdash{}  v=w:A)



Date html generated: 2020_05_20-PM-03_10_53
Last ObjectModification: 2020_04_06-PM-00_53_53

Theory : cubical!type!theory


Home Index