Nuprl Lemma : context-subset-term-0

[Gamma:j⊢]. ∀[T:{Gamma ⊢ _}].  (Top ⊆{Gamma, 0(𝔽) ⊢ _:T})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-0: 0(𝔽) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top
Definitions unfolded in proof :  uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T cubical-term: {X ⊢ _:A} face-0: 0(𝔽) context-subset: Gamma, phi all: x:A. B[x] cubical-term-at: u(a) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a not: ¬A implies:  Q false: False
Lemmas referenced :  istype-top cubical-type_wf cubical_set_wf I_cube_pair_redex_lemma cube_set_restriction_pair_lemma I_cube_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf lattice-0_wf lattice-1_wf names-hom_wf fset_wf nat_wf face-lattice-0-not-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaEquality_alt cut introduction extract_by_obid hypothesis universeIsType sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate dependent_set_memberEquality_alt sqequalRule dependent_functionElimination Error :memTop,  lambdaFormation_alt setIsType equalityIstype applyEquality productEquality cumulativity isectEquality because_Cache independent_isectElimination setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry functionExtensionality independent_functionElimination voidElimination setEquality functionIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[T:\{Gamma  \mvdash{}  \_\}].    (Top  \msubseteq{}r  \{Gamma,  0(\mBbbF{})  \mvdash{}  \_:T\})



Date html generated: 2020_05_20-PM-02_57_07
Last ObjectModification: 2020_04_04-PM-05_11_42

Theory : cubical!type!theory


Home Index