Nuprl Lemma : term-to-pathtype_wf

[X:j⊢]. ∀[A:{X ⊢ _}].  ∀a:{X.𝕀 ⊢ _:(A)p}. (<>a ∈ {X ⊢ _:Path(A)})


Proof




Definitions occuring in Statement :  term-to-pathtype: <>a pathtype: Path(A) interval-type: 𝕀 cc-fst: p cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] term-to-pathtype: <>a subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  term-to-path_wf path-type-subtype csm-ap-term_wf cubical_set_cumulativity-i-j cube-context-adjoin_wf interval-type_wf csm-ap-type_wf cc-fst_wf csm-id-adjoin_wf-interval-0 subset-cubical-term2 sub_cubical_set_self csm_id_adjoin_fst_type_lemma csm-ap-id-type csm-id-adjoin_wf-interval-1 cubical-term_wf cubical-type-cumulativity2 cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis applyEquality instantiate because_Cache independent_isectElimination Error :memTop,  universeIsType lambdaEquality_alt axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    \mforall{}a:\{X.\mBbbI{}  \mvdash{}  \_:(A)p\}.  (<>a  \mmember{}  \{X  \mvdash{}  \_:Path(A)\})



Date html generated: 2020_05_20-PM-03_20_01
Last ObjectModification: 2020_04_06-PM-06_36_49

Theory : cubical!type!theory


Home Index