Nuprl Lemma : term-to-pathtype_wf
∀[X:j⊢]. ∀[A:{X ⊢ _}].  ∀a:{X.𝕀 ⊢ _:(A)p}. (<>a ∈ {X ⊢ _:Path(A)})
Proof
Definitions occuring in Statement : 
term-to-pathtype: <>a
, 
pathtype: Path(A)
, 
interval-type: 𝕀
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
term-to-pathtype: <>a
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
term-to-path_wf, 
path-type-subtype, 
csm-ap-term_wf, 
cubical_set_cumulativity-i-j, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-id-adjoin_wf-interval-0, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm_id_adjoin_fst_type_lemma, 
csm-ap-id-type, 
csm-id-adjoin_wf-interval-1, 
cubical-term_wf, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
applyEquality, 
instantiate, 
because_Cache, 
independent_isectElimination, 
Error :memTop, 
universeIsType, 
lambdaEquality_alt, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    \mforall{}a:\{X.\mBbbI{}  \mvdash{}  \_:(A)p\}.  (<>a  \mmember{}  \{X  \mvdash{}  \_:Path(A)\})
Date html generated:
2020_05_20-PM-03_20_01
Last ObjectModification:
2020_04_06-PM-06_36_49
Theory : cubical!type!theory
Home
Index