Nuprl Lemma : term-to-path_wf
∀[X:j⊢]. ∀[A:{X ⊢ _}].  ∀a:{X.𝕀 ⊢ _:(A)p}. (<>(a) ∈ {X ⊢ _:(Path_A (a)[0(𝕀)] (a)[1(𝕀)])})
Proof
Definitions occuring in Statement : 
term-to-path: <>(a), 
path-type: (Path_A a b), 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
csm-id-adjoin: [u], 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
term-to-path: <>(a), 
path-type: (Path_A a b), 
member: t ∈ T, 
so_lambda: so_lambda3, 
prop: ℙ, 
and: P ∧ Q, 
pathtype: Path(A), 
cubical-fun: (A ⟶ B), 
cubical-fun-family: cubical-fun-family(X; A; B; I; a), 
subtype_rel: A ⊆r B, 
lattice-point: Point(l), 
record-select: r.x, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
btrue: tt, 
cubical-type-at: A(a), 
pi1: fst(t), 
interval-type: 𝕀, 
constant-cubical-type: (X), 
I_cube: A(I), 
functor-ob: ob(F), 
interval-presheaf: 𝕀, 
uimplies: b supposing a, 
squash: ↓T, 
true: True, 
so_apply: x[s1;s2;s3], 
cand: A c∧ B, 
csm-id-adjoin: [u], 
csm-ap-term: (t)s, 
cubical-term-at: u(a), 
cubical-lambda: (λb), 
csm-ap: (s)x, 
interval-0: 0(𝕀), 
csm-id: 1(X), 
csm-adjoin: (s;u), 
cc-adjoin-cube: (v;u), 
cc-fst: p, 
interval-1: 1(𝕀)
Lemmas referenced : 
cubical-subset-term, 
pathtype_wf, 
equal_wf, 
cubical-type-at_wf, 
cubical_type_at_pair_lemma, 
nh-id_wf, 
dM0_wf, 
subtype_rel_self, 
interval-type_wf, 
cube-set-restriction_wf, 
cubical-term-at_wf, 
csm-ap-term_wf, 
cubical_set_cumulativity-i-j, 
cube-context-adjoin_wf, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-id-adjoin_wf-interval-0, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm_id_adjoin_fst_type_lemma, 
csm-ap-id-type, 
dM1_wf, 
subtype_rel-equal, 
cube-set-restriction-id, 
csm-id-adjoin_wf-interval-1, 
istype-cubical-type-at, 
I_cube_wf, 
path-restriction, 
cubical-term_wf, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf, 
cubical-lambda_wf, 
cubical-fun-as-cubical-pi, 
cc-adjoin-cube_wf, 
squash_wf, 
true_wf, 
fset_wf, 
nat_wf, 
csm-ap-type-at
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
productEquality, 
applyEquality, 
dependent_functionElimination, 
Error :memTop, 
setElimination, 
rename, 
because_Cache, 
instantiate, 
independent_isectElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
equalityIstype, 
inhabitedIsType, 
applyLambdaEquality, 
productElimination, 
hyp_replacement
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    \mforall{}a:\{X.\mBbbI{}  \mvdash{}  \_:(A)p\}.  (<>(a)  \mmember{}  \{X  \mvdash{}  \_:(Path\_A  (a)[0(\mBbbI{})]  (a)[1(\mBbbI{})])\})
Date html generated:
2020_05_20-PM-03_18_17
Last ObjectModification:
2020_04_06-PM-06_34_50
Theory : cubical!type!theory
Home
Index