Nuprl Lemma : term-to-path_wf

[X:j⊢]. ∀[A:{X ⊢ _}].  ∀a:{X.𝕀 ⊢ _:(A)p}. (<>(a) ∈ {X ⊢ _:(Path_A (a)[0(𝕀)] (a)[1(𝕀)])})


Proof




Definitions occuring in Statement :  term-to-path: <>(a) path-type: (Path_A b) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] term-to-path: <>(a) path-type: (Path_A b) member: t ∈ T so_lambda: so_lambda3 prop: and: P ∧ Q pathtype: Path(A) cubical-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) subtype_rel: A ⊆B lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt cubical-type-at: A(a) pi1: fst(t) interval-type: 𝕀 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) interval-presheaf: 𝕀 uimplies: supposing a squash: T true: True so_apply: x[s1;s2;s3] cand: c∧ B csm-id-adjoin: [u] csm-ap-term: (t)s cubical-term-at: u(a) cubical-lambda: b) csm-ap: (s)x interval-0: 0(𝕀) csm-id: 1(X) csm-adjoin: (s;u) cc-adjoin-cube: (v;u) cc-fst: p interval-1: 1(𝕀)
Lemmas referenced :  cubical-subset-term pathtype_wf equal_wf cubical-type-at_wf cubical_type_at_pair_lemma nh-id_wf dM0_wf subtype_rel_self interval-type_wf cube-set-restriction_wf cubical-term-at_wf csm-ap-term_wf cubical_set_cumulativity-i-j cube-context-adjoin_wf csm-ap-type_wf cc-fst_wf csm-id-adjoin_wf-interval-0 subset-cubical-term2 sub_cubical_set_self csm_id_adjoin_fst_type_lemma csm-ap-id-type dM1_wf subtype_rel-equal cube-set-restriction-id csm-id-adjoin_wf-interval-1 istype-cubical-type-at I_cube_wf path-restriction cubical-term_wf cubical-type-cumulativity2 cubical-type_wf cubical_set_wf cubical-lambda_wf cubical-fun-as-cubical-pi cc-adjoin-cube_wf squash_wf true_wf fset_wf nat_wf csm-ap-type-at
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality_alt productEquality applyEquality dependent_functionElimination Error :memTop,  setElimination rename because_Cache instantiate independent_isectElimination imageElimination natural_numberEquality imageMemberEquality baseClosed universeIsType independent_pairFormation dependent_set_memberEquality_alt equalityTransitivity equalitySymmetry productIsType equalityIstype inhabitedIsType applyLambdaEquality productElimination hyp_replacement

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    \mforall{}a:\{X.\mBbbI{}  \mvdash{}  \_:(A)p\}.  (<>(a)  \mmember{}  \{X  \mvdash{}  \_:(Path\_A  (a)[0(\mBbbI{})]  (a)[1(\mBbbI{})])\})



Date html generated: 2020_05_20-PM-03_18_17
Last ObjectModification: 2020_04_06-PM-06_34_50

Theory : cubical!type!theory


Home Index