Nuprl Lemma : cubical-subset-term

[X:j⊢]. ∀[T:{X ⊢ _}]. ∀[psi:I:fset(ℕ) ⟶ alpha:X(I) ⟶ T(alpha) ⟶ ℙ].
  ∀[t:{X ⊢ _:T}]
    t ∈ {X ⊢ _:{t:T | ∀I,alpha. psi[I;alpha;t]}} supposing ∀I:fset(ℕ). ∀alpha:X(I).  psi[I;alpha;t(alpha)] 
  supposing cubical-type-restriction(X;T;I,a,t.psi[I;a;t])


Proof




Definitions occuring in Statement :  cubical-subset: cubical-subset cubical-type-restriction: cubical-type-restriction cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-type-at: A(a) cubical-type: {X ⊢ _} I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T cubical-term: {X ⊢ _:A} all: x:A. B[x] subtype_rel: A ⊆B so_lambda: so_lambda3 prop: so_apply: x[s1;s2;s3] cubical-term-at: u(a) cubical-subset: cubical-subset guard: {T} squash: T true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  names-hom_wf I_cube_wf istype-cubical-type-at cube-set-restriction_wf cubical-subset_wf cubical-type-ap-morph_wf cubical-term-at_wf cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type-restriction_wf fset_wf nat_wf cubical-type_wf cubical_set_wf cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma equal_wf squash_wf true_wf istype-universe cubical-type-at_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt sqequalRule functionIsType because_Cache universeIsType introduction extract_by_obid isectElimination hypothesisEquality hypothesis equalityIstype instantiate applyEquality lambdaEquality_alt cumulativity inhabitedIsType independent_isectElimination universeEquality functionExtensionality dependent_functionElimination Error :memTop,  lambdaFormation_alt equalitySymmetry imageElimination equalityTransitivity natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T:\{X  \mvdash{}  \_\}].  \mforall{}[psi:I:fset(\mBbbN{})  {}\mrightarrow{}  alpha:X(I)  {}\mrightarrow{}  T(alpha)  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}[t:\{X  \mvdash{}  \_:T\}]
        t  \mmember{}  \{X  \mvdash{}  \_:\{t:T  |  \mforall{}I,alpha.  psi[I;alpha;t]\}\} 
        supposing  \mforall{}I:fset(\mBbbN{}).  \mforall{}alpha:X(I).    psi[I;alpha;t(alpha)] 
    supposing  cubical-type-restriction(X;T;I,a,t.psi[I;a;t])



Date html generated: 2020_05_20-PM-03_13_49
Last ObjectModification: 2020_04_06-PM-05_17_59

Theory : cubical!type!theory


Home Index