Nuprl Lemma : cubical-path-app-0

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[t:{X ⊢ _:(Path_A b)}].  (t 0(𝕀a ∈ {X ⊢ _:A})


Proof




Definitions occuring in Statement :  cubical-path-app: pth r path-type: (Path_A b) interval-0: 0(𝕀) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] interval-0: 0(𝕀) cubical-path-app: pth r cubicalpath-app: pth r cubical-app: app(w; u) path-type: (Path_A b) cubical-term: {X ⊢ _:A} implies:  Q cubical-term-at: u(a) cubical-type-at: A(a) cubical-subset: cubical-subset pi1: fst(t) and: P ∧ Q
Lemmas referenced :  cubical-term-equal2 cubical-path-app_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 interval-0_wf I_cube_wf fset_wf nat_wf cubical-term_wf path-type_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality hypothesis sqequalRule independent_isectElimination lambdaFormation_alt universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType setElimination rename productElimination equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[t:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].    (t  @  0(\mBbbI{})  =  a)



Date html generated: 2020_05_20-PM-03_16_51
Last ObjectModification: 2020_04_06-PM-06_32_12

Theory : cubical!type!theory


Home Index