Nuprl Lemma : csm-paths-equal

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[p:{X ⊢ _:(Path_A b)}]. ∀[H:j⊢]. ∀[tau:H j⟶ X]. ∀[q:{H ⊢ _:(Path(A))tau}].
  (p)tau q ∈ {H ⊢ _:((Path_A b))tau} supposing (p)tau q ∈ {H ⊢ _:(Path(A))tau}


Proof




Definitions occuring in Statement :  path-type: (Path_A b) pathtype: Path(A) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B squash: T prop: all: x:A. B[x] true: True cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  csm-ap-term_wf pathtype_wf path-type-subtype cubical-term_wf csm-ap-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cube_set_map_wf path-type_wf cubical-type_wf cubical_set_wf squash_wf true_wf csm-pathtype paths-equal subset-cubical-term2 sub_cubical_set_self csm-path-type subtype_rel_self equal_wf istype-universe iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut equalityIstype because_Cache introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule universeIsType instantiate inhabitedIsType lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination hyp_replacement universeEquality productElimination independent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[p:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[tau:H  j{}\mrightarrow{}  X].
\mforall{}[q:\{H  \mvdash{}  \_:(Path(A))tau\}].
    (p)tau  =  q  supposing  (p)tau  =  q



Date html generated: 2020_05_20-PM-03_18_03
Last ObjectModification: 2020_04_07-PM-03_16_17

Theory : cubical!type!theory


Home Index