Nuprl Lemma : csm-paths-equal
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[p:{X ⊢ _:(Path_A a b)}]. ∀[H:j⊢]. ∀[tau:H j⟶ X]. ∀[q:{H ⊢ _:(Path(A))tau}].
  (p)tau = q ∈ {H ⊢ _:((Path_A a b))tau} supposing (p)tau = q ∈ {H ⊢ _:(Path(A))tau}
Proof
Definitions occuring in Statement : 
path-type: (Path_A a b)
, 
pathtype: Path(A)
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
true: True
, 
cube_set_map: A ⟶ B
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
cube-cat: CubeCat
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
type-cat: TypeCat
, 
names-hom: I ⟶ J
, 
cat-comp: cat-comp(C)
, 
compose: f o g
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
csm-ap-term_wf, 
pathtype_wf, 
path-type-subtype, 
cubical-term_wf, 
csm-ap-type_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cube_set_map_wf, 
path-type_wf, 
cubical-type_wf, 
cubical_set_wf, 
squash_wf, 
true_wf, 
csm-pathtype, 
paths-equal, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-path-type, 
subtype_rel_self, 
equal_wf, 
istype-universe, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
equalityIstype, 
because_Cache, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
universeIsType, 
instantiate, 
inhabitedIsType, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
hyp_replacement, 
universeEquality, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[p:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[tau:H  j{}\mrightarrow{}  X].
\mforall{}[q:\{H  \mvdash{}  \_:(Path(A))tau\}].
    (p)tau  =  q  supposing  (p)tau  =  q
Date html generated:
2020_05_20-PM-03_18_03
Last ObjectModification:
2020_04_07-PM-03_16_17
Theory : cubical!type!theory
Home
Index