Nuprl Lemma : paths-equal
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[p:{X ⊢ _:(Path_A a b)}]. ∀[q:{X ⊢ _:Path(A)}].
  p = q ∈ {X ⊢ _:(Path_A a b)} supposing p = q ∈ {X ⊢ _:Path(A)}
Proof
Definitions occuring in Statement : 
path-type: (Path_A a b)
, 
pathtype: Path(A)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
cubical-path-app: pth @ r
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
cubicalpath-app_wf, 
interval-0_wf, 
interval-1_wf, 
path-type-subtype, 
cubical-term_wf, 
pathtype_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
path-type_wf, 
cubical-type_wf, 
cubical_set_wf, 
cubical-path-app-0, 
cubical-path-app-1, 
path-type-ext-eq, 
subtype_rel_weakening, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
dependent_set_memberEquality_alt, 
hypothesis, 
independent_pairFormation, 
sqequalRule, 
productIsType, 
equalityIstype, 
because_Cache, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
universeIsType, 
instantiate, 
setEquality, 
productEquality, 
independent_isectElimination
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[p:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].  \mforall{}[q:\{X  \mvdash{}  \_:Path(A)\}].
    p  =  q  supposing  p  =  q
Date html generated:
2020_05_20-PM-03_17_51
Last ObjectModification:
2020_04_07-PM-00_59_12
Theory : cubical!type!theory
Home
Index