Nuprl Lemma : paths-equal

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[p:{X ⊢ _:(Path_A b)}]. ∀[q:{X ⊢ _:Path(A)}].
  q ∈ {X ⊢ _:(Path_A b)} supposing q ∈ {X ⊢ _:Path(A)}


Proof




Definitions occuring in Statement :  path-type: (Path_A b) pathtype: Path(A) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a and: P ∧ Q cand: c∧ B member: t ∈ T subtype_rel: A ⊆B cubical-path-app: pth r guard: {T} prop:
Lemmas referenced :  cubicalpath-app_wf interval-0_wf interval-1_wf path-type-subtype cubical-term_wf pathtype_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j path-type_wf cubical-type_wf cubical_set_wf cubical-path-app-0 cubical-path-app-1 path-type-ext-eq subtype_rel_weakening equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut dependent_set_memberEquality_alt hypothesis independent_pairFormation sqequalRule productIsType equalityIstype because_Cache introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality universeIsType instantiate setEquality productEquality independent_isectElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[p:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].  \mforall{}[q:\{X  \mvdash{}  \_:Path(A)\}].
    p  =  q  supposing  p  =  q



Date html generated: 2020_05_20-PM-03_17_51
Last ObjectModification: 2020_04_07-PM-00_59_12

Theory : cubical!type!theory


Home Index