Nuprl Lemma : csm-term-to-pathtype

[G:j⊢]. ∀[A:{G ⊢ _}].
  ∀a:{G.𝕀 ⊢ _:(A)p}. ∀[H:j⊢]. ∀[sigma:H j⟶ G].  ((<>a)sigma = <>(a)sigma+ ∈ {H ⊢ _:Path((A)sigma)})


Proof




Definitions occuring in Statement :  term-to-pathtype: <>a pathtype: Path(A) interval-type: 𝕀 csm+: tau+ cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] term-to-pathtype: <>a subtype_rel: A ⊆B cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g
Lemmas referenced :  csm-term-to-path cube_set_map_wf cubical-term_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf csm-ap-type_wf cc-fst_wf cubical-type-cumulativity2 cubical-type_wf cubical_set_wf path-type-subtype csm-ap-term_wf csm+_wf subtype_rel_self csm-id-adjoin_wf csm-interval-type interval-0_wf interval-1_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt dependent_functionElimination universeIsType inhabitedIsType instantiate applyEquality sqequalRule because_Cache Error :memTop

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].    \mforall{}a:\{G.\mBbbI{}  \mvdash{}  \_:(A)p\}.  \mforall{}[H:j\mvdash{}].  \mforall{}[sigma:H  j{}\mrightarrow{}  G].    ((<>a)sigma  =  <>(a)sigma+)



Date html generated: 2020_05_20-PM-03_20_24
Last ObjectModification: 2020_04_07-PM-00_59_22

Theory : cubical!type!theory


Home Index